Research and Publications - Department of Computer Science
Permanent URI for this collection
Browse
Browsing Research and Publications - Department of Computer Science by Author "Boston University"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Food/Non-Food Classification of Real-Life Egocentric Images in Low- and Middle-Income Countries Based on Image Tagging Features(Frontiers, 2021) Chen, Guangzong; Jia, Wenyan; Zhao, Yifan; Mao, Zhi-Hong; Lo, Benny; Anderson, Alex K.; Frost, Gary; Jobarteh, Modou L.; McCrory, Megan A.; Sazonov, Edward; Steiner-Asiedu, Matilda; Ansong, Richard S.; Baranowski, Thomas; Burke, Lora; Sun, Mingui; University of Pittsburgh; Imperial College London; University of Georgia; Boston University; University of Alabama Tuscaloosa; University of Ghana; United States Department of Agriculture (USDA); Baylor College of MedicineMalnutrition, including both undernutrition and obesity, is a significant problemin low- and middle-income countries (LMICs). In order to study malnutrition and develop effective intervention strategies, it is crucial to evaluate nutritional status in LMICs at the individual, household, and community levels. In a multinational research project supported by the Bill & Melinda Gates Foundation, we have been using a wearable technology to conduct objective dietary assessment in sub-Saharan Africa. Our assessment includes multiple diet-related activities in urban and rural families, including food sources (e.g., shopping, harvesting, and gathering), preservation/storage, preparation, cooking, and consumption (e.g., portion size and nutrition analysis). Our wearable device ("eButton" worn on the chest) acquires real-life images automatically during wake hours at preset time intervals. The recorded images, in amounts of tens of thousands per day, are post-processed to obtain the information of interest. Although we expect future Artificial Intelligence (AI) technology to extract the information automatically, at present we utilize AI to separate the acquired images into two binary classes: images with (Class 1) and without (Class 0) edible items. As a result, researchers need only to study Class-1 images, reducing their workload significantly. In this paper, we present a composite machine learning method to perform this classification, meeting the specific challenges of high complexity and diversity in the real-world LMIC data. Our method consists of a deep neural network (DNN) and a shallow learning network (SLN) connected by a novel probabilistic network interface layer. After presenting the details of our method, an image dataset acquired from Ghana is utilized to train and evaluate the machine learning system. Our comparative experiment indicates that the new composite method performs better than the conventional deep learning method assessed by integrated measures of sensitivity, specificity, and burden index, as indicated by the Receiver Operating Characteristic (ROC) curve.Item A Systematic Review of Technology-Driven Methodologies for Estimation of Energy Intake(IEEE, 2019) Doulah, Abul; Mccrory, Megan A.; Higgins, Janine A.; Sazonov, Edward; University of Alabama Tuscaloosa; Boston University; University of Colorado DenverAccurate measurement of energy intake (EI) is important for estimation of energy balance, and, correspondingly, body weight dynamics. Traditional measurements of EI rely on self-report, which may be inaccurate and underestimate EI. The imperfections in traditional methodologies such as 24-hour dietary recall, dietary record, and food frequency questionnaire stipulate development of technology-driven methods that rely on wearable sensors and imaging devices to achieve an objective and accurate assessment of EI. The aim of this research was to systematically review and examine peer-reviewed papers that cover the estimation of EI in humans, with the focus on emerging technology-driven methodologies. Five major electronic databases were searched for articles published from January 2005 to August 2017: Pubmed, Science Direct, IEEE Xplore, ACM library, and Google Scholar. Twenty-six eligible studies were retrieved that met the inclusion criteria. The review identified that while the current methods of estimating EI show promise, accurate estimation of EI in free-living individuals presents many challenges and opportunities. The most accurate result identified for EI (kcal) estimation had an average accuracy of 94%. However, collectively, the results were obtained from a limited number of food items (i.e., 19), small sample sizes (i.e., 45 meal images), and primarily controlled conditions. Therefore, new methods that accurately estimate EI over long time periods in free-living conditions are needed.