The first record of a paguroid shield (Decapoda, Anomura, Annuntidiogenidae) from the Miocene of Cyprus

Jonathan J.W. Wallaard – Oertijdmuseum, Booscheweg
René H.B. Fraaije – Oertijdmuseum, Booscheweg
John W.M. Jagt – Natuurhistorisch Museum Maastricht, the Netherlands
Adiël A. Klompmaker – University of Alabama
Barry W.M. van Bakel – Oertijdmuseum, Booscheweg

Deposited 08/31/2021

Citation of published version:

DOI: https://doi.org/10.5474/geologija.2020.010
The first record of a paguroid shield (Decapoda, Anomura, Annuntidiogenidae) from the Miocene of Cyprus

Prva najdba ščitov rakov samotarjev (Decapoda. Anomura, Annuntidiogenidae) iz miocenskih plasti Cipra

Jonathan J.W. WALLAARD¹, René H.B. FRAAIJE¹, John W.M. JAGT², Adiël A. KLOMPMAKER³,⁴ & Barry W.M. VAN BAKEL¹

¹Oertijdmuseum, Boschweg 80, 5283 WB Boxtel, the Netherlands; curator@oertijdmuseum.nl
²Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, 6211 KJ Maastricht, the Netherlands; john.jagt@maastricht.nl
³Department of Museum Research and Collections & Alabama Museum of Natural History, The University of Alabama, Box 370340, Tuscaloosa, AL 35487, USA; adielklompmaker@gmail.com
⁴Department of Integrative Biology & Museum of Paleontology, University of California, Berkeley, 1005 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA

Prejeto / Received 8. 11. 2019; Sprejeto / Accepted 2. 4. 2020; Objavljeno na spletu / Published online 22. 4. 2020

Key words: Paguroidea, Mediterranean, Cenozoic, Miocene, Cyprus, new species
Ključne besede: Paguroidea, sredozemlje, cenozoik, miocene, Ciper, nova vrsta

Abstract

For the first time, a paguroid shield is recorded from upper Miocene reefal strata (Koronia Member, Pakhna Formation) that crop out along the northern margin of the Troodos Massif, north of the village of Mitsero, Cyprus. Described here as Paguristes joecollinsi sp. nov., it constitutes the first paguroid shield known from Miocene deposits. The paucity of Cenozoic paguroid shields can probably be linked to a collecting bias in view of their relatively small size; in addition, suitable gastropod shells and internal moulds of such should be screened for ‘hidden’ hermit crabs.

Izvleček

Predstavljamo prvo najdbo ščita raka samotarja iz zgornjemiocenskih grebenskih apnencev (člen Koronija, formacija Pakhna), ki izdajajo vzdolž severnega robe masiva Troodos, severno od vasi Mitsero na Cipru. V prispevku predstavljamo novo vrsto Paguristes joecollinsi sp. nov., ki je hkrati tudi prva najdb paguroidnega ščita miocenske starosti. Odsotnost kenozojskih paguroidnih ščitov je verjetno povezana z njihovo majhnostjo, saj jih hitro spregledamo. Pri iskanju ostankov rakov samotarjev je treba natančno preveriti tudi lupine in kamena jedra polžev.

Introduction

Up to now, abundant paguroid shield material has been recorded only from Jurassic reefal deposits (e.g., Van Bakel et al., 2008; Fraaije, 2014a; Fraaije et al., 2019) and mid- and Upper Cretaceous strata of comparable lithologies (e.g., Fraaije et al., 2008, 2009, 2012). In stark contrast is the current record of just a single hermit crab shield from Eocene coral-algal limestones in northern Italy as recorded by Beschin et al. (2016, 2017) and of an individual of Dardanus colosseus, preserved in situ in an internal mould of a gastropod from the Eocene of Austria (Fraaije & Polkowsky, 2016). Recently, six partially preserved shields have been briefly described and illustrated on the internet by a private collector, who had recovered them from reefal strata of Danian age at a quarry near Vigny (Paris Basin, France) (Buridan.over-blog.com 2018). All of the above constitute the current meagre record of paguroid shields of Paleogene and Neogene age that we are aware of.

Although relatively common in the fossil record, hermit crabs rarely become fossilised within the empty gastropod shells they usually inhabi-
it, probably because the animals abandon these when under stress (Dunbar & Nyborg, 2003). Alternative hypotheses are that the hard parts fall out of the gastropod shell upon decay of the hermit crab and not all Mesozoic hermit crabs inhabited gastropods (e.g., Fraaije, 2003). A recent study by Klompmaker et al. (2017) has revealed that the decay of complete paguroid animals is a rapid process, in comparison to other decapod crustaceans such as lobsters and crabs. They also demonstrated that, in addition to paguroid claws, anterior carapaces (shields) also have a relatively high preservational potential compared to the less calcified posterior shield. This result suggests that the paucity of extinct paguroid carapaces/shields might be a matter having been overlooked by collectors in the field on account of their small to diminutive size in comparison to other associated decapod crustaceans. Additionally, extensive checking of the content of gastropod shells or their internal moulds is likely to yield more paguroid specimens.

The new specimen described here was collected in May 2017 by one of us (RHBF) while doing fieldwork together with the fourth author (AAK) in upper Miocene reefal deposits at Mitsero, Cyprus (Figs. 1, 2). Following the record of a new, shallow-water munidopsid anomuran by Fraaije (2014b), this is only the second study on decapod crustaceans from the Miocene of Cyprus. More material from various localities in Cyprus is now contained in the collections of the Oertijdmuseum at Boxtel (the Netherlands). Below we adopt the morphological terminology of paguroid carapaces as described by Fraaije et al. (2019).

Institutional abbreviation: MAB, Oertijdmuseum, Boxtel, the Netherlands.

Systematic palaeontology
Order Decapoda Latreille, 1802
Infraorder Anomura MacLeay, 1838
Superfamily Paguroidea Latreille, 1802
Family Annuntidiogenidae Fraaije, 2014a
Genus Paguristes Dana, 1851

Type species: Paguristes hirtus Dana, 1851, by the subsequent designation of Stimpson (1858).

Paguristes joecollinsi sp. nov.

Diagnosis: Shield elongated (length/width ratio c. 1.15); broad, rimmed and shallow orbital cavity; convex postrostral ridges indented medially by central gastric furrow; pronounced, globose and spinose massetic region; reniform keraial region; narrow and spinose lateral branchial area. Anterior gastric region with transversely crenulated muscle scar; V-shaped cervical groove.

Material: The holotype and sole known specimen to date (MAB 10456a,b: part and counter-part) is an anterior part of the carapace with a maximum length of 3.8 mm and a maximum width of 3.3 mm.

Etymology: The species is named after our recently departed friend and colleague, Joseph (‘Joe’) S.H. Collins of London (England), who did so much to stimulate decapod crustacean studies by three of us (RHBF, BWMvB and JWMJ). We owe him a great deal.

Locality and stratigraphy: To the west of Kreatos Hill, about one kilometre to the north-north-west of the village of Mitsero, in coral-reef
talus of the upper Miocene (Tortonian, 11.6-7.2 Ma) Koronia Member (Pakhna Formation; see Fig. 1). The shield was recovered from a block of bioclastic rock measuring about one square metre. The sedimentology and stratigraphy of this region have been described in detail by Robertson et al. (1991) and Follows (1992).

Description: Shield elongated (L/W ratio c. 1.15), convex transversely, almost straight longitudinally, divided into distinct regions by grooves (as shown in Fig. 3); broad, rimmed and shallow orbital cavity, broad, slightly convex postrostral ridges centrally indented by central gastric furrow, extending posteriorly in faint central line; pronounced, very globose and spinose massetic region, posteriorly covered with finely spinose ridges; tiny reniform but clear keraial region; narrow and spinose lateral branchial area; anterior gastric region alongside central furrow with transversely crenulated ornament; V-shaped cervical groove; shield irregularly covered with large (setal) pores.

Remarks: The new species is assigned to *Paguristes* because the shape of the anterior shield, the grooves such as a central gastric groove, and the regional definition conform well with those of many modern species (e.g., Forest et al., 2000). Numerous representatives of *Paguristes* have been described from the fossil record, from the Albian (late Early Cretaceous) onwards (see Fraaije et al., 2015, table 1), but nearly all of these are based exclusively on chelae, with the exception of two, namely a partial shield from the upper Pleistocene of southern Italy, referred to *Paguristes cf. syrtensis* de Saint Laurent, 1971, by Garassino et al. (2014) and a specifically indeterminate form, *Paguristes* sp., from the lower Eocene of northern Italy (Beschin et al., 2016). A comparison with this specimen is not made here, because this species will be placed in a different genus (Fraaije et al., 2020). *Paguristes joecollinsi* sp. nov. differs from *P. cf. syrtensis* in having less convex orbital cavities, a much more globose massetic region, less convex upper orbital margins and substantially fewer (setal) pores across the shield, although the cuticle is less well preserved. We have also compared the species to extant representatives from the same geographical region, the Mediterranean, which was a nearly enclosed basin during the Tortonian (e.g., Rögl, 1999). After all, decapods crustaceans with stratigraphical ranges of 10 million years or more have been reported occasionally (Kломпmaker et al., 2012, p. 792-793; Hyžný, 2016, table 1). This region may also harbour one or more descend-

Dunbar, S. & Nyborg, T.G. 2003: Three specimens of hermit crabs found associated with their host gastropod shell from the Pliocene San Diego Formation, California and reassessment of the paucity of fossil hermit crabs associated with gastropod shells in the fossil record. Geological Society of America, Abstracts with Programs, 35: 56.

MacLeay, W.S. 1838: On the brachyurous decapod Crustacea brought from the Cape by Dr. Smith. In: Smith A, ed. Illustrations of the Annulosa of South Africa; being a portion of the objects of natural history chiefly collected during an expedition into the interior of South Africa, under the direction of Dr. Andrew Smith, in the years 1834, 1835. and 1836; fitted out by “The Cape of Good Hope Association for Exploring Central Africa”. London: Smith, Elder, and Co., pp. 53-71.

Rögl, F. 1999: Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to...
Miocene paleogeography (short overview). Geologica Carpathica, 50/4: 339-349.
Van Bakel, B.W.M., Fraaije, R.H.B, Jagt, J.W.M. & Artal, P. 2008: An unexpected diversi-