How Much Statistical Data can be Recovered from Alabama Football History?

Steven L. MacCall – University of Alabama
Huapu Liu – University of Alabama
Melissa Anderson – University of Alabama

Deposited 02/04/2020

Citation of Conference Presentation:

© 2019 Steven L. MacCall, Huapu Liu, and Melissa Anderson
How Much Statistical Data Can Be Recovered from Alabama Football History?

Piloting a Crowdsourced Approach Using Wikibase as Data Repository

Steven L. MacCall, PhD
Huapu Liu, MLIS
Melissa Anderson, SLIS Graduate Student

School of Library and Information Studies
The University of Alabama
Agenda

• Setting the stage: The weather data rescue example.

• Background: Discussions with Ken Gaddy of the Paul W. Bryant Museum:
 • Overabundant digital content and the need for a player database
 • Experimenting with play-by-play datasets to index plays of games (play database)

• Data-driven indexing to create a “play database”:
 • Accomplished: Transforming JSON formatted born digital play-by-play data
 • Our current study: What about data rescue from print formats?

• Our data processing pipeline for recovering historical data:
 • 1992 games: Transcribing and data extraction method
 • 1961 games: Data extraction method

• Results and conclusions.

• Postscript: How should we label what we are doing?
Setting the Stage: Rescuing Weather Data

- Efforts underway to recover old weather observations extracted from ship logbooks.

- Structured data suitable for extraction to spreadsheets for integration and further analysis.
Background for our Study

• For over a decade, PI has had discussions with Ken Gaddy of the Paul W. Bryant Museum:
 • Overabundant historical and current multimedia content
 • The need for a player database

• During this time, there was a realization that indexing individual images was not realistic because of too much multimedia content.

• The answer seems to lie with using play-by-play datasets to index plays of games (play database) rather than each image or video clip.

• So far, we have accomplished the semantic indexing of all plays from the 2017 Alabama football season using Wikibase as our structured data repository.
Wikibase as a Structured Data Repository

• Wikibase is open-source software of the WikiMedia Foundation:
 • Drives their Wikidata service
 • Wikibase Client is a MediaWiki extension that can turn a MediaWiki installation into a client of a structured data repository
 • Wikibase is beginning to be deployed in LIS institutions such as OCLC’s Project Passage

• In fall 2018, we started using a local instance of Wikibase to accomplish our semantic indexing of the 2017 season:
 • RDF triples describe attributes of plays (example play)
 • SPARQL endpoint allows for querying of play database (sample query)
Our Data Processing Pipeline – Overview

• Recovering data from sources:
 • Transcribe and extract paper-based play-by-play data (1992 games)
 • Extract paper-based play-by-play data from non-structured textual data (1961 games)

• Data wrangling of recovered data:
 • Formatted data in spreadsheets according to relevant data type from our Wikibase properties list (e.g., down and distance; game score at start of play...)
 • Entity reconciliation using custom Python script: Mapped certain properties’ values to Wikibase Q numbers (e.g., player names, type of play...)

• Batch upload of data to Wikibase using QuickStatements tool.
Data Sources for this Study

• 1992 data sources:
 • Two games from 1992 season
 • Alabama versus LA Tech on September 26, 1992 at Legion Field in Birmingham
 • Alabama versus LSU on November 7, 1992 at Tiger Stadium in Baton Rouge, LA
 • Typewritten datasets on paper
 • Play-by-play game logs and drive charts recorded by UA Athletics officials
 • Preserved at the Paul W. Bryant Museum’s research documents collection

• 1961 data sources:
 • Two games from 1961 season
 • Alabama versus Tulane on September 30, 1961 at Ladd Stadium in Mobile, AL
 • Alabama versus Vanderbilt on October 7, 1961 at Dudley Field in Nashville, TN
 • Text from primary Tuscaloosa News article for each game
 • Accessible online at Google newspaper archive
Our Zooniverse Process
(1992 Dataset)

• Designed transcription and data extraction tasks with written instructions and video tutorials.
• Conducted usability testing.
• Recruited volunteers.
• Exported .csv files datasets.
• Developed data wrangling and cleaning workflows.
Post-Download Data Processing
(1992 Dataset)

• Challenges presented by Zooniverse formatting of downloaded data:
 • The exported data is in the format of text instead of tabular data
 • Data is separated into different workflows (Play-by-Play Transcription; Play Type; Resulting Yardage; Offense Team; Featured Players)

• Data Manipulation:
 • Transforming the data into needed format (Text to columns by delimiters; Transpose columns to rows/rows to columns)
 • Connecting data from different tasks into one spreadsheet (Matching the data entry from different workflows)
1992 Data Recovery Summary

- The use of volunteers on the Zooniverse Platform was workable.

- There are challenges to scaling up:
 - Preprocessing, cleaning, and volunteer management are time consuming
 - There are over 100 games with typewritten, paper datasources across all seasons of UA football

- More advanced OCR might reduce role of crowdsourcing.
Extracting Play Data from Newspaper Articles
(1961 Dataset)

Close reading of textual sources

- Extracted play-by-play data read from text to spreadsheet:
 - Articles sectioned into quarters from game
 - Player name data
 - Numerical data (e.g., play yardage and/or scoring outcomes)

- Recorded inferences sanctioned by data (e.g., drive data).

1961 example data source

Tide Engulfs Vandy, 35 To 6
Study Results and Conclusion

• How much data did we recover?

• Results for 1992:
 • Alabama versus LA Tech: Data on 167 play actions and 28 drives
 • Alabama versus LSU: Data on 185 play actions and 26 drives

• Results for 1961:
 • Alabama versus Tulane: Data on 104 play actions and 22 drives
 • Alabama versus Vanderbilt: Data on 129 play actions and 25 drives

• Valuable data is available to reconstruct the past at a more granular level (play-by-play) than is currently the case.

• For scaling, our process will need “machine-aided” assistance, including: intelligent OCR, Named Entity Recognition, and digital image processing.
Postscript: How Should We Label This Work?

• How should our “player database” work be labeled from a DH perspective?

• **Factoid Prosopographical Database** aligns with long practice:

 • Prosopography is a historical research methodology that investigates the common characteristics of a group of people to create a collective biography (Stone, 1971).

 • Derives from *prosopon*, meaning “person.”

 • Factoid prosopography is a structured data approach that links people to information about them via spots in primary sources (Pasin & Bradley, 2015).

 • Recent projects explore approaches to making prosopographical databases available on the Semantic Web (Pasin & Bradley, 2015).
Textual vs. Structural

- Prosopographical reference tools were originally historical prose.

- In the 1990s, King’s College London developed the factoid model of prosopographical databases.

[Michael Pasin and John Bradley, 2015]
FACTOID = a spot in a source that acts as a structural nexus connecting together historical sources, people, places, possessions, personal relationships, titles, etc.

[Passin and Bradley, 2015]
Final Thoughts: Toward Agonography?

• How should our “play database” work be labeled from a DH perspective?

• If prosopography is about people, are we rather creating the first sports-related agonography?
 • *Agon* can be translated as “competition,” “competition at games,” or “contest” (*OED*; Merriam-Webster).
 • May provide terminology to describe play database.
 • Has been used to refer to electronic game design but not formally associated with any current resource or practice.
Thanks to Our Volunteers!

- Dr. James Elmborg, Director of the School of Library and Information Studies (SLIS)
- Dr. Elizabeth Aversa, President of the Osher Lifelong Learning Institute, UA
- Mr. Rocco Aversa, Tuscaloosa
- Dr. Ann Bourne, SLIS Assistant Director
- Dr. Steven Yates, SLIS Assistant Director & School Library Media Coordinator
- Jonathan Bowen, Graduate Student, UA School of Public Administration
- Emily Mayers-Twist, JD, SLIS Graduate Student
- Dione Thrift, Reference Assistant, North Shelby Library, SLIS Graduate Student
- Emma Davis, Library Specialist, Hoover Public Library, SLIS Graduate Student
- Brandon Wicks, MFA, Visiting Assistant Professor of Writing, Emory University
- Dr. Walter Ward, Associate Professor of History, UAB