The Growth Temperature and Measurement Temperature Dependen
ces of Soft Magnetic Properties and Effective Damping Parameter of (FeCo)-Al Alloy Thin Films

G. Mankey – University of Alabama et al.

Deposited 07/22/2019

Citation of published version:

The growth temperature and measurement temperature dependences of soft magnetic properties and effective damping parameter of (FeCo)-Al alloy thin films

Yusuke Ariake, Shuang Wu, Isao Kanada, Tim Mewes, Yoshitomo Tanaka, Gary Mankey, Claudia Mewes, and Takao Suzuki

ARTICLES YOU MAY BE INTERESTED IN

Soft magnetic properties and damping parameter of (FeCo)-Al alloy thin films
AIP Advances 7, 056105 (2017); https://doi.org/10.1063/1.4975995

Origin of low Gilbert damping in half metals
Applied Physics Letters 95, 022509 (2009); https://doi.org/10.1063/1.3157267

Increased magnetic damping in ultrathin films of Co$_2$FeAl with perpendicular anisotropy
Applied Physics Letters 110, 252409 (2017); https://doi.org/10.1063/1.4989379
The growth temperature and measurement temperature dependences of soft magnetic properties and effective damping parameter of (FeCo)-Al alloy thin films

Yusuke Ariake,1,2,a Shuang Wu,1,3 Isao Kanada,1,2 Tim Mewes,1,3 Yoshitomo Tanaka,2 Gary Mankey,1,3 Claudia Mewes,1,3 and Takao Suzuki1,4,5
1The Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, AL 35487, USA
2Materials Development Center, TDK Corporation, Narita, Chiba 286-0805, Japan
3Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, AL 35487, USA
4Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
5Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA

(Presented 10 November 2017; received 2 October 2017; accepted 19 November 2017; published online 5 January 2018)

The soft magnetic properties and effective damping parameters of Fe$_{73}$Co$_{25}$Al$_2$ alloy thin films are discussed. The effective damping parameter α_{eff} measured by ferromagnetic resonance for the 10 nm-thick sample is nearly constant ($\approx 0.004 \pm 0.0008$) for a growth temperature T_s from ambient to 200 $^\circ$C, and then tends to decrease for higher temperatures and α_{eff} is 0.002 ± 0.0004 at $T_s = 300$ $^\circ$C. For the 80 nm-thick sample, the α_{eff} seems to increase with T_s from $\alpha_{\text{eff}} = 0.001 \pm 0.0002$ at $T_s =$ ambient to $\alpha_{\text{eff}} = 0.002 \pm 0.0004$. The α_{eff} is found nearly constant ($\alpha_{\text{eff}} = 0.004 \pm 0.0008$) over a temperature range from 10 to 300 K for the 10 nm films with the different T_s (ambient, 100 and 200 $^\circ$C). Together with an increasing non-linearity of the frequency dependence of the linewidth at low T_s, extrinsic contributions such as two-magnon scattering dominate the observed temperature dependence of effective damping and linewidth. © 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5007744

I. INTRODUCTION

For future high frequency device applications of soft magnetic thin films, further improvement in saturation magnetization (M_s), permeability (μ), coercivity (H_c), eddy current loss and damping parameter (α_{eff}) is indispensable.1 Among many candidates of materials to choose, FeCo-based alloy thin films are attractive because they exhibit high M_s and low α_{eff}.2–5 A recent work on Fe$_{73}$Co$_{25}$Al$_2$ thin films reported the thickness dependence of effective damping parameter α_{eff} and showed the values of $\alpha_{\text{eff}} = 0.0004$ at about 85nm, indicating an attractive candidate as soft magnetic materials for future high frequency device applications.5 However, since the coercivity for those films was still high for any practical use, lowering coercivity is desirable. The present paper describes a systematic study of the growth- and measurement-temperature dependences of soft magnetic properties and damping parameter of Fe$_{73}$Co$_{25}$Al$_2$ thin films.

aElectronic mail: ariakey@jp.tdk.com
II. EXPERIMENTAL

Multilayers of [Fe (0.45 nm)/Fe$_{66}$Co$_{34}$ (1.3 nm)/Al (0.038 nm)] x N were sputter-deposited onto MgO (100) by DC magnetron sputtering in Ar atmosphere of 4 mTorr, where N = 5 and 37, corresponding to the total thickness of 10 and 80 nm, respectively. The substrate-deposition temperatures (T$_s$) were varied from ambient to 350 °C. In order to induce a uniaxial magnetic anisotropy, an in-plane field of 50 Oe was applied during deposition. A 5 nm thick Ru layer was over-coated at ambient temperature for protection. The base pressure prior to deposition was better than 2 x 10$^{-7}$ Torr. The deposition rates for Fe, Fe$_{66}$Co$_{34}$ and Al were 0.15, 0.17 and 0.038 nm/s, respectively.

The film thicknesses were estimated by X-ray reflectivity. Structural analyses were performed by X-ray diffraction (XRD) with Cu K$_{α}$ radiation, high resolution transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). The composition of these samples was estimated as Fe$_{73}$Co$_{25}$Al$_{2}$ by EDX.5 Measurements of magnetic properties were carried out by a vibrating sample magnetometer (VSM) in fields up to 10 kOe. Two different types of measurements for magnetization dynamics were carried out by ferromagnetic resonance (FMR); namely over a frequency range from (i) 12 to 66 GHz at room temperature and (ii) 10 to 40 GHz for a temperature range from 10 to 300 K.

III. RESULTS AND DISCUSSION

A. Growth temperature dependence

Figure 1 shows the XRD patterns for 80 nm-thick Fe$_{73}$Co$_{25}$Al$_{2}$ alloy thin films deposited onto MgO (100) substrate. Structural analyses were performed by X-ray diffraction (XRD) with Cu K$_{α}$ radiation, high resolution transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). The composition of these samples was estimated as Fe$_{73}$Co$_{25}$Al$_{2}$ by EDX.5 Measurements of magnetic properties were carried out by a vibrating sample magnetometer (VSM) in fields up to 10 kOe. Two different types of measurements for magnetization dynamics were carried out by ferromagnetic resonance (FMR); namely over a frequency range from (i) 12 to 66 GHz at room temperature and (ii) 10 to 40 GHz for a temperature range from 10 to 300 K.

![FIG. 1. XRD patterns for Fe$_{73}$Co$_{25}$Al$_{2}$ alloy thin films deposited onto MgO (100) substrate. Low angle XRD patterns for the films deposited at 100 °C are shown in the inserted figure where blue line shows the pattern of (200)$_{FeCoAl}$ and red line shows of (200)$_{MgO}$.](image-url)
(200)_{bcc} separated at every 90 degree. In addition, it was also found that these peaks were shifted by 45 degree with respect to the peaks of (200)_{MgO}, indicating that the film is a single crystalline film with $<100>_{FeCoAl}/<110>_{MgO}$.

Figure 2 shows the TEM cross sectional image, together with the diffraction patterns for 50 nm-thick Fe$_{73}$Co$_{25}$Al$_{2}$ alloy thin films deposited at ambient temperature onto MgO (100) substrate. The TEM image shows the columnar structure grown along the film normal with the average width of about 20-30 nm. The diffraction patterns indicate that the film is polycrystalline film and its growth direction is $<110>_{FeCoAl}$, which is different of the films deposited above 100 °C.

Figure 3(a) are the M-H curves for the 10 nm-thick samples deposited at various T_s. These curves were measured along the direction of $<100>_{FeCoAl}$ and $<110>_{FeCoAl}$ by VSM. The shape of the curve measured along the direction of $<100>_{FeCoAl}$ is significantly changed from the sample with the T_s of 100 °C to 200 °C, where the remanence M_r becomes much higher with higher T_s. The values of M_s, H_c and M_r/M_s for the samples with the thicknesses of 10 and 80 nm deposited at various T_s are summarized in Figure 3(b). It is seen that M_r remains unchanged (1,600 emu/cm3) with T_s. On the other hand, H_c measured along the direction of $<100>_{FeCoAl}$ changes with T_s, becoming minimum at around 100 and 200 °C for the 10 and 80 nm-thick samples, respectively. The observed decrease of H_c is probably caused by reducing a residual stress in the films which induces magnetic anisotropy through magneto-elastic effect. The M_r/M_s measured along the $<110>_{FeCoAl}$...
decreases with T_s, becoming minimum at $T_s = 200 \, ^\circ\text{C}$. The M_r/M_s along the $<100>_{\text{FeCoAl}}$ on the other hand, increases with T_s and it becomes higher than that along the $<110>_{\text{FeCoAl}}$ above T_s of 150 $^\circ$C.

Figure 4(a) shows the FMR linewidth ΔH as a function of resonance frequency f_{res} for Fe$_{73}$Co$_{25}$Al$_2$ alloy thin films deposited at various T_s. The linewidth ΔH tends to decrease with T_s, and the linearity of these relationships is improved for higher T_s over a wide range of frequency for the 10 nm-thick sample. However, for the 80 nm-thick film, the nonlinear frequency dependence of ΔH is found for $T_s = \text{ambient}$ and 100 $^\circ$C. As T_s goes higher, the crystallinity becomes improved, as found by XRD and TEM. Therefore, one would expect the contributions of crystalline anisotropy field to the linewidth broadening which varies from grain to grain.

For the 10 nm thick sample fabricated at $T_s = \text{ambient temperature}$, the nonlinear linewidth evolution can be attributed as the characteristic of two-magnon scattering due to the boundary of Ru/FeCoAl, as shown by Lenz et al.7 The α_{eff} was estimated based on the linear relationship, as shown by a dotted line, fitted to the following equation.

$$\Delta H = \Delta H_0 + \frac{4\pi}{\sqrt{3}} \gamma \alpha_{\text{eff}} f_{\text{res}}.$$

The result of α_{eff} as a function of T_s is shown in Figure 4(b). It is found that the α_{eff} for the 10 nm-thick sample is nearly constant ($\approx 0.004 \pm 0.0008$) for T_s from ambient to 200 $^\circ$C, and then tends to decrease for higher temperatures and α_{eff} is 0.002 \pm 0.0004 at $T_s = 300 \, ^\circ$C. For the 80 nm-thick sample, although there is much scatter in the data points, the α_{eff} seems to increase with T_s from $\alpha_{\text{eff}} = 0.001 \pm 0.0002$ at $T_s = \text{ambient}$ to $\alpha_{\text{eff}} = 0.002 \pm 0.0004$. It should be pointed out that the sample fabricated at $T_s = 150 \, ^\circ$C has $\alpha_{\text{eff}} = 0.0007 \pm 0.0002$, in agreement within an error with the value reported.5 As pointed out by Li et al.,8 there can be a contribution from eddy current even in relatively thin films. An estimation of damping parameter contribution of eddy current loss in a 80 nm-thick cobalt film is about 0.001, and therefore in the present study its contribution to the measured effective damping parameter may not be negligible for the 80 nm-thick samples. However, due to the quadratic dependence on the film thickness this contribution is negligible for the 10 nm-thick film. Angle dependent measurements of the H_{res} and ΔH were also performed, showing a four fold symmetry for the resonance field, which is consistent with the in-plane XRD measurements, with the easy axis along the $<100>_{\text{FeCoAl}}$.

FIG. 4. (a) FMR linewidth ΔH as a function of resonance frequency f_{res} and (b) growth temperature T_s dependence of effective damping parameter α_{eff} for Fe$_{73}$Co$_{25}$Al$_2$ alloy thin films deposited onto MgO (100) substrate. The reported result in Ref. 5 is shown as the red square.
FIG. 5. Measurement temperature dependence of effective damping parameter α_{eff} for Fe$_{73}$Co$_{25}$Al$_2$ alloy thin films deposited onto MgO (100) substrate at ambient, 100 and 200 °C with 10 nm thickness. Also shown are the results of Permalloy thin films and of YIG thin films.

B. Measurement-temperature dependence

Figure 5 shows the temperature dependence of α_{eff} for the 10 nm-thick films with different growth temperatures T_s, together with the data of permalloy and YIG thin films reported. For all the samples under consideration, the α_{eff} are nearly constant ($\alpha_{\text{eff}} = 0.004 \pm 0.0008$) over a temperature range from 10 to 300 K for the three different T_s (ambient, 100 and 200 °C). On the other hand, the permalloy and the YIG thin films exhibit the decrease with decreasing temperature, although the permalloy film shows a slight increase for a range from 100 to 50 K. The present result of α_{eff} vs. T is at variance with those results. It is noted that in the present study an increasing non-linearity of the frequency dependence of the linewidth at low growth temperatures was observed, therefore it is likely that extrinsic contributions such as two-magnon scattering dominate the observed temperature dependence of effective damping and linewidth. Although further studies are necessary, the present result of the α_{eff} which is insensitive to temperature suggests that a thin (around 10 nm-thick) Fe$_{73}$Co$_{25}$Al$_2$ alloy thin film may be useful for high frequency device applications.

IV. SUMMARY

The growth- and measurement-temperature dependences of soft magnetic properties and effective damping parameters of Fe$_{73}$Co$_{25}$Al$_2$ alloy thin films are discussed. The saturation magnetization M_s is about 1,600 emu/cm3, independent of thickness and the substrate deposition temperature T_s. Coercivity H_c is found to decrease with T_s up to around 100-200 °C, which is probably caused by reducing the stress in the film.

The effective damping parameter α_{eff} measured by ferromagnetic resonance (FMR) over a frequency range from 12 to 66 GHz at room temperature and over a temperature range from 10 to 300 K. For the 10 nm-thick sample the effective damping parameter is nearly constant ($\approx 0.004 \pm 0.0008$) for T_s from ambient to 200 °C, and then tends to decrease for higher temperatures and α_{eff} is 0.002 ± 0.0004 at $T_s = 300$ °C. For the 80 nm-thick sample, the α_{eff} seems to increase with T_s from $\alpha_{\text{eff}} = 0.001 \pm 0.0002$ at $T_s = $ ambient to $\alpha_{\text{eff}} = 0.002 \pm 0.0004$. As pointed out by Li et al., there can be a contribution from eddy currents even in relatively thin films. However, due to its quadratic thickness dependence eddy currents do not contribute significantly to the linewidth of the 10 nm film.
The temperature dependence of α_{eff} obtained for a frequency range from 10 to 40 GHz for the 10 nm films with the different growth temperatures T_s (ambient, 100 and 200 °C) shows that the α_{eff} is nearly constant ($\alpha_{\text{eff}} = 0.004 \pm 0.0008$) over a temperature range from 10 to 300 K. Together with an increasing non-linearity of the frequency dependence of the linewidth at low growth temperatures, extrinsic contributions such as two-magnon scattering are likely responsible for the observed absence of a temperature dependence of the effective damping and linewidth.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Michael Buettner for his technical assistance. The present work was supported in part by the MINT-TDK collaboration program.