Periastron Observations of TeV Gamma-Ray Emission from a Binary System with a 50-year Period

M. Santander – University of Alabama et al.

Deposited 06/24/2019

Citation of published version:

Periastron Observations of TeV Gamma-Ray Emission from a Binary System with a 50-year Period

(MAGIC Collaboration)

and

(MAGIC Collaboration)

1 Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
2 Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645, USA
3 Physics Department, Columbia University, New York, NY 10027, USA
4 Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany
5 DESY, Platanenallee 6, D-15738 Zeuthen, Germany
6 Department of Physics, Washington University, St. Louis, MO 63130, USA
7 Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
8 Department of Astrophysics and Astronomy, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802, USA
9 Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
10 School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
11 Department of Physics, California State University—East Bay, Hayward, CA 94542, USA
12 School of Physics and Astronomy, Georgia Institute of Technology, 837 State Street NW, Atlanta, GA 30332-0430, USA
13 School of Physics and Astronomy, and Center for Relativistic Astrophysics, University of Alabama, Tuscaloosa, AL 35487, USA
14 School of Physics, National University of Ireland Galway, University Road, Galway, Ireland
15 Physics Department, McGill University, Montreal, QC H3A 2T8, Canada
16 Santa Cruz Institute for Particle Physics and Department of Physics and Astronomy, University of California, Santa Cruz, CA 95064, USA
17 Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716, USA
18 Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242, USA
19 Department of Physics and Astronomy, DePauw University, Greencastle, IN 46135-0017, USA
20 School of Physics and Astronomy, Barnard College, Columbia University, NY 10027, USA
21 School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
22 WIPAC and Department of Physics, University of Wisconsin-Madison, Madison, WI, USA
23 Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
24 Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA
25 Idaho State University, Pocatello, ID 83209, USA
26 Inst. de Astrofísica de Canarias, E-38200 La Laguna, and Universidad de La Laguna, Dpto. Astrofísica, E-38206 La Laguna, Tenerife, Spain
27 Centro de Astrofísica e Informática de trailing edge star, I-33100 Udine, Italy
1. Introduction

TeV gamma-ray emitting binary systems are extremely rare objects, likely corresponding to a relatively brief period in the evolution of some massive star binaries (Dubus et al. 2017). They consist of a neutron star or black hole in a binary orbit with a massive star, and their high-energy emission provides a unique opportunity to study relativistic particle acceleration in a continuously changing physical environment. Of particular interest are systems where the compact object is a pulsar, as the pulsed emission firmly identifies the nature of the compact object and provides an accurate determination of the orbital parameters, the available energy budget, and the likely acceleration mechanism. Prior to this Letter, only one TeV binary with a known pulsar had been detected: the pulsar/Be star binary system PSR B1259–63/LS 2883 (Aharonian et al. 2005).

In this Letter, we present the discovery of a second member of this class, PSR J2032+4127/MT91 213.

Pulsed emission, with a period of $P = 143\text{ ms}$, was first detected from PSR J2032+4127 in a blind search of Fermi-Large Area Telescope (LAT) gamma-ray data (Abdo et al. 2009) and was subsequently detected in radio observations with the Green Bank Telescope (GBT; Camilo et al. 2009). These observations revealed dramatic changes in the pulsar spin-down rate, an effect most easily explained by Doppler shift due to the pulsar’s motion in a long-period binary system (Lyne et al. 2015). The pulsar’s companion was identified as a B0Ve star, MT91 213, which has a mass of around $15\ M\odern{\odot}$ and a circumstellar disk that varies in radius by more than a factor of two, from 0.2 to 0.5 au (Ho et al. 2017). The pulsar spin-down luminosity (\dot{E}) is $1.7 \times 10^{35}\ erg\ s^{-1}$, with a characteristic age
2. Observations and Analysis

VHE gamma-ray observations of PSR J2032+4127/MT91 213 were conducted by MAGIC and VERITAS, which are sensitive to astrophysical gamma-rays above 50 GeV. MAGIC consists of two 17 m diameter telescopes, located at the observatory of El Roque de Los Muchachos on the island of La Palma, Spain, whereas VERITAS is an array of four 12 m diameter telescopes at the Fred Lawrence Whipple Observatory near Tucson, Arizona. The observatories and their capabilities are described in Aleksić et al. (2016; MAGIC) and Park et al. (2015; VERITAS), and references therein.

In this Letter, we present the results of 181.3 hr of observations with VERITAS (51.6 hr of archival data taken before 2016, 30.1 hr between 2016 September and 2017 June, 99.6 hr between 2017 September and December) and 87.9 hr of observations with MAGIC (53.7 hr between 2016 May and September and 34.2 hr between 2017 June and December). Observations were conducted in “wobble” mode, with the source location offset from the center of the field of view, allowing simultaneous evaluation of the background (Fomin et al. 1994). The data were analyzed using standard tools (Zanin et al. 2013; Maier & Holder 2017), in which Cherenkov images are first calibrated, cleaned, and parameterized (Hillas 1985), then used to reconstruct the energy and arrival direction of the incident gamma-ray, and to reject the majority of the cosmic-ray background (Krawczynski et al. 2006; Albert et al. 2008b).

A total of 186 Swift-XRT (Burrows et al. 2005) observations were taken between 2008 June 16 and 2018 April 15, equating to 136.4 hr of live time. The data were collected in photon-counting mode and analyzed using the HEASoft analysis package version 6.24.53 The background was estimated from five regions equidistant from PSR J2032+4127, and the flux was calculated using XSPEC.

3. Variability, Morphology, and Spectrum

A new spatially unresolved time-varying VHE gamma-ray source was detected at a position compatible with PSR J2032+4127/MT91 213. The source is named VER J2032+414 and MAGIC J2032+4127 in the VERITAS and MAGIC source catalogs, respectively. It is also spatially coincident with TeV J2032+4130, the previously detected extended VHE source, but offset from the centroid of the extended emission by approximately 10′.

The complete X-ray and gamma-ray light curves are shown in Figure 1. Following the initial detection of PSR J2032+4127/MT91 213 in 2017 September by VERITAS and MAGIC (VERITAS & MAGIC Collaborations 2017) with a flux exceeding the baseline flux from TeV J2032+4130, gamma-ray emission was observed to increase up to the time of periastron (2017 November 13; MJID 58070), reaching a factor of 10 higher than the baseline. Approximately one week after periastron the flux sharply decreased to a level compatible with the baseline emission, before recovering to the periastron level a few days later. Further observations were conducted after periastron, but the combination of low source elevation angle, poor weather conditions, and rather brief exposure resulted in a relatively poor flux measurement. In total, during the 2017 fall observations (MJID 57997–58110), VERITAS

53 https://heasarc.nasa.gov/heasoft/
The Astrophysical Journal Letters, 867:L19 (8pp), 2018 November 1

Abeysekara et al.

Figure 1. Upper panels (left axes) show the 0.3–10.0 keV background-subtracted Swift-XRT energy-flux light curve (red circles) of PSR J2032+4127/MT91 213. For clarity, observations with exposures less than 1.4 ks are excluded from the plot. Lower panels show the >200 GeV photon-flux light curves from VERITAS (green triangles) and MAGIC (blue squares). The left plot shows the full light curve, while the right plot shows only the months around periastron. The horizontal solid lines indicate the average flux prior to 2017 for the respective experiments. The solid gray lines (right axes) are the energy-flux light curve predictions from Li et al. (2018) for X-rays and updated predictions from Takata et al. (2017) using the parameters from Li et al. (2018; J. Takata 2018, private communication) for VHE gamma-rays. Both models assume an inclination angle of 60°. The vertical gray dashed line indicates periastron.

Figure 2. Significance sky maps of the region around PSR J2032+4127/MT91 213 showing both the VERITAS (left panel) and MAGIC (right panel) results for observations during 2017 fall. The position of PSR J2032+4127/MT91 213 is shown as a black “+” the centroid of the gamma-ray emission as a black “o,” the position and extension for the respective telescope’s measurements of TeV J2032+4130 are shown as a black “x” and a dashed line, and the position of Cygnus X-3 is shown with a white diamond. The white circle in the lower left-hand corner is of radius 0’1, the approximate point-spread function for these measurements at 1 TeV. The wobble positions are shown as white “x.”

detected PSR J2032+4127/MT91 213 with a significance of 21.5 standard deviations (σ) and MAGIC with a significance of 19.5σ.

Figure 2 shows sky maps for the complete fall 2017 VHE data sets, revealing overlapping emission from TeV J2032+4130 and PSR J2032+4127/MT91 213. For both the VERITAS and MAGIC data we fit the gamma-ray excess maps with a two-component model, consisting of a bivariate Gaussian function to represent the extended source and a symmetrical Gaussian function to model the unresolved emission at the location of the binary. The parameters of the extended source model, indicated by the dashed ellipses in
Figure 2, were constrained to match those measured prior to the appearance of the binary. For MAGIC, the extended source has a semimajor axis of 0.1125 ± 0.001 and a semiminor axis of 0.08 ± 0.01, centered on R.A. = $20^\circ 31^\prime 39.7^\prime\prime \pm 2^\prime\prime$, decl. = $41^\circ 34^\prime 23^\prime\prime \pm 20^\prime\prime$, at an angle of $34^\circ \pm 2^\circ$ east of north. For VERITAS, the extended source parameters are those reported in Abeysekara et al. (2018): semimajor and semiminor axes of $0.19 \pm 0.02_{\text{stat}} \pm 0.01_{\text{sys}}$ and $0.08 \pm 0.01_{\text{stat}} \pm 0.03_{\text{sys}}$, centered on R.A. = $20^\circ 31^\prime 33^\prime\prime \pm 2^\prime\prime_{\text{stat}} \pm 2^\prime\prime_{\text{sys}}$, decl. = $41^\circ 34^\prime 38^\prime\prime \pm 36^\prime\prime_{\text{stat}} \pm 36^\prime\prime_{\text{sys}}$, with an orientation of $41^\circ \pm 4^\circ_{\text{stat}} \pm 1^\circ_{\text{sys}}$ east of north. The centroid of the unresolved component is measured to be at R.A. = $20^\circ 32^\prime 10^\prime\prime \pm 2^\prime\prime_{\text{stat}} \pm 2^\prime\prime_{\text{sys}}$, decl. = $41^\circ 27^\prime 34^\prime\prime \pm 16^\prime\prime_{\text{stat}} \pm 26^\prime\prime_{\text{sys}}$ for VERITAS, and R.A. = $20^\circ 32^\prime 7^\prime\prime \pm 2^\prime\prime_{\text{stat}}$, decl. = $41^\circ 28^\prime 9^\prime\prime \pm 20^\prime\prime_{\text{stat}}$ for MAGIC, which are consistent, within the measured uncertainties, with the location of PSR J2032+4127/MR91 213 (Abeysekara et al. 2018).

The source spectrum (Figure 3) is also formed of two emission components: steady, baseline emission from the extended source TeV J2032+4130 and variable emission associated with the binary system. Prior to 2017, only the baseline emission component was present, while the 2017 data include contributions from both the baseline and the variable binary. We performed a global spectral fit to the complete data set, in which the pre-2017 observations were fit with a pure power law for the baseline, and the 2017 data were fit with the same power law, plus an additional component for the binary emission. Two models were tested for the binary emission: a pure power law and a power law with an exponential cutoff. The VERITAS data favor the cutoff model over the power law for the binary emission, with an F-test probability of 0.997 and a cutoff energy of 0.57 ± 0.20 TeV. MAGIC observations also favor an exponential cutoff, with a probability of 0.993 and a cutoff energy of 1.40 ± 0.97 TeV. Full details of the fit parameters are given in Table 1. We note that the only other gamma-ray binary to display a spectral cutoff in the VHE regime is LS 5039, with a cutoff at 8.7 ± 2.0 TeV in the VHE high state, close to inferior conjunction (Aharonian et al. 2006).

The fit process was then repeated with the 2017 data broken up into two periods, to search for spectral variation with orbital phase and/or flux state of the binary system. We define a high state (MJD 58057–58074 and 58080–58110), which covers the periods around periastron where the flux above 0.2 TeV was greater than 1.0×10^{-11} cm$^{-2}$ s$^{-1}$ (approximately five times greater than the baseline flux from TeV J2032+4130), and a low state, covering the 2017 observations prior to periastron (MJD 57928–58056). We performed a global fit to the data
VERITAS (>220 GeV)

Pre-2017
\(N_0 = (8.78 \pm 2.56) \times 10^{-15} \) cm\(^{-2}\) s\(^{-1}\) TeV\(^{-1}\)
\(E_0 = 3.47 \) TeV
\(\Gamma = 2.14 \pm 0.53 \)
\(E_C = ... \)
\(\chi^2/dof = 40.6/7 \)

Fall 2017
\(N_0 = (1.53 \pm 0.14) \times 10^{-12} \)
\(E_0 = 0.70 \) TeV
\(\Gamma = 2.81 \pm 0.09 \)
\(E_C = ... \)
\(\chi^2/dof = ... \)

Pre-2017
\(N_0 = (7.62 \pm 1.51) \times 10^{-15} \)
\(E_0 = 4.18 \) TeV
\(\Gamma = 2.14 \pm 0.29 \)
\(E_C = ... \)
\(\chi^2/dof = 8.6/6 \)

Fall 2017
\(N_0 = (8.04 \pm 3.37) \times 10^{-12} \)
\(E_0 = 0.64 \) TeV
\(\Gamma = 1.26 \pm 0.45 \)
\(E_C = 0.57 \pm 0.20 \)
\(\chi^2/dof = ... \)

MAGIC (>80 GeV)

Pre-2017
\(N_0 = (2.04 \pm 0.63) \times 10^{-14} \)
\(E_0 = 3.50 \) TeV
\(\Gamma = 2.23 \pm 0.17 \)
\(E_C = ... \)
\(\chi^2/dof = 9.6/12 \)

Fall 2017
\(N_0 = (1.65 \pm 0.33) \times 10^{-12} \)
\(E_0 = 0.70 \) TeV
\(\Gamma = 2.61 \pm 0.18 \)
\(E_C = ... \)
\(\chi^2/dof = ... \)

Pre-2017
\(N_0 = (2.20 \pm 0.64) \times 10^{-14} \)
\(E_0 = 3.50 \) TeV
\(\Gamma = 2.17 \pm 0.26 \)
\(E_C = ... \)
\(\chi^2/dof = 4.8/11 \)

Fall 2017
\(N_0 = (3.77 \pm 1.68) \times 10^{-12} \)
\(E_0 = 0.70 \) TeV
\(\Gamma = 1.74 \pm 0.37 \)
\(E_C = 1.40 \pm 0.97 \)
\(\chi^2/dof = ... \)

Pre-2017
\(N_0 = (2.30 \pm 0.67) \times 10^{-14} \)
\(E_0 = 3.50 \) TeV
\(\Gamma = 2.15 \pm 0.19 \)
\(E_C = ... \)
\(\chi^2/dof = 4.4/15 \)

Fall 2017
\(N_0 = (9.84 \pm 3.41) \times 10^{-13} \)
\(E_0 = 0.70 \) TeV
\(\Gamma = 2.57 \pm 0.26 \)
\(E_C = ... \)
\(\chi^2/dof = ... \)

Pre-2017
\(N_0 = (3.69 \pm 0.64) \times 10^{-12} \)
\(E_0 = 0.70 \) TeV
\(\Gamma = 2.17 \pm 0.23 \)
\(E_C = ... \)
\(\chi^2/dof = ... \)

Fall 2017
\(N_0 = (5.11 \pm 3.61) \times 10^{-12} \)
\(E_0 = 0.70 \) TeV
\(\Gamma = 1.55 \pm 0.61 \)
\(E_C = 0.58 \pm 0.33 \)
\(\chi^2/dof = ... \)

Pre-2017
\(N_0 = (1.65 \pm 0.14) \times 10^{-12} \)
\(E_0 = 0.70 \) TeV
\(\Gamma = 2.20 \pm 0.40 \)
\(E_C = ... \)
\(\chi^2/dof = ... \)

Note. Each group of rows shows the result of a simultaneous fit of both the baseline emission from the region prior to the appearance of the binary, modeled as a power law (PL), and the sum of this baseline with a new component from the binary, modeled as either a power law or a power law with an exponential cutoff (PLEC). These fits were performed across the data periods defined in Section 3. In each row, the parameters shown correspond to the model component listed in bold, where \(N_0 \) is the differential flux normalization (calculated at the de-correlation energy \(E_0 \)), \(\Gamma \) is the spectral index, and \(E_C \) is the cutoff energy for PLEC models. The \(\chi^2 \) and degrees of freedom (dof) are calculated from the joint fit across the given data.

4. Discussion

PSR J2032+4127/MT91 213 is the second TeV gamma-ray binary system to be detected in which the nature of the compact object is clearly established. Non-thermal emission from these systems likely results from the interaction of the pulsar wind with the wind and/or disk of the Be star (Tavani & Arons 1997; Kirk et al. 1999; Dubus 2013). Particles are accelerated at the shock that forms between the pulsar and Be star winds. These subsequently produce synchrotron emission from radio to X-ray bands and inverse Compton emission at TeV energies. Numerous competing factors play a role in creating and modulating the observed emission. These include the efficiency of inverse Compton production and the degree of photon–photon absorption, which both depend upon the geometrical properties of the system with respect to the line of sight and the intensity, wavelength, and spatial distribution of target photon fields (Böttcher & Dermer 2005). Additional factors include: the position of the pulsar in relation to structures in the stellar wind (Petropoulou et al. 2018); the bulk motion and cooling of the post-shocked material (Dubus 2006); the structure of the magnetic field around the star (Sierpowska & Bednarek 2005); and the degree of magnetization of the pulsar wind and its evolution with radial distance from the pulsar (Takata & Taam 2009). Isotropized pair cascades, triggered by misaligned VHE photons that would not otherwise be observed, can also contribute to the emission (Bednarek 1997; Sushch & Böttcher 2014). Finally, interactions with the material and radiation of a circumstellar disk, the defining feature of the Be stellar class, may also modulate the X-ray and gamma-ray fluxes (Sierpowska-Bartosik & Bednarek 2008).

Modeling the time-dependent broadband emission is therefore complex and challenging. Takata et al. (2017) have
presented a model that explains the increasing X-ray flux prior to periastron as the result of the radial dependence of the pulsar wind magnetization, and the X-ray suppression at periastron due to Doppler boosting effects caused by bulk motion of the post-shocked flow, naturally leading to an emission light curve that is asymmetric with respect to periastron. A recently revised version of their model predictions is given in Li et al. (2018), and also in Figure 1. The model prediction matches the early part of the XRT light curve reasonably well, when scaled by a factor of 0.5, but is unable to reproduce the rapid brightening around MJD 58080, when PSR J2032+4127/MT91 213 was at superior conjunction. This feature may be explained, at least in part, by interaction of the pulsar with the circumstellar disk of the Be star, which could be confirmed by observations of radio pulsations during the periastron passage. Alternatively, as discussed in Petropoulou et al. (2018), it may be caused by geometrical effects associated with the orientation of the stellar disk with respect to the pulsar’s orbit.

Bednarek et al. (2018) also calculated gamma-ray emission from the system, including a detailed treatment of the pair cascades triggered by the absorption of primary gamma-rays, and the subsequent production of inverse Compton emission. They do not calculate a detailed light curve, but conclude that the binary emission may dominate the overall VHE flux, becoming comparable to, or exceeding, the steady flux from TeV J2032+4130 for a few weeks around periastron and superior conjunction. The predicted elevated flux close to periastron of \(1.6 \times 10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1}\) at 1 TeV is similar to the high-state emission levels reported in this Letter. We also note that the VHE efficiency \(\langle L_{\gamma}/E \rangle = 1.4\%\) for PSR J2032+4127/MT91 213 is approximately the same as that of PSR B1259–63/LS 2883. In contrast, the GeV efficiency of PSR J2032+4127/MT91 213 is significantly lower than that of PSR B1259–63/LS 2883, which can exceed 100% (Johnson et al. 2018; Li et al. 2018).

A distinctive feature observed in the VHE light curve is a sharp flux drop around seven days after periastron, lasting just a few days. As noted in Takata et al. (2017), a similar dip has been seen in the light curve of PSR B1259–63/LS 2883, which Sushch & van Soelen (2017) attributed to photon–photon absorption. This effect is predicted to be strongest when both the interaction angle between the photons is optimal and when the gamma-ray photons pass through the densest photon field, which occurs around superior conjunction, five to 15 days after periastron for PSR J2032+4127/MT91 213.

Based on the detailed sampling of the VHE and X-ray light curves reported here, coupled with the measurement of an unexpected low-energy spectral cutoff in the VHE low state, it is clear that the existing models will require significant revision. Analysis of the pulsar timing evolution over periastron will provide important additional input, including more accurate measurements of the system geometry. It will also allow for more sensitive searches for GeV emission in the Fermi-LAT data, with the dominant magnetospheric emission from the pulsar removed by a temporarily gated analysis.

Finally, it is interesting to reconsider the properties of the steady VHE source, TeV J2032+4130, in the light of these results. As noted in Aliu et al. (2014), if we assume that TeV J2032+4130 is the PWN of PSR J2032+4127, then PSR J2032+4127 is one of the oldest and weakest pulsars with a nebula seen in both X-ray and VHE gamma-rays. In a recent population study, the Abdalla et al. (2017) derived empirical relations between VHE luminosity and pulsar spin-down energy, and also between PWN radius and characteristic age. For PSR J2032+4127, these relations predict a radius of over 20 pc (compared to a measured extent of \(4.7 \times 2.0\) pc), and a TeV luminosity (1–10 TeV) of \(2 \times 10^{33} \text{ erg s}^{-1}\) (compared to the measured value of \(8 \times 10^{32} \text{ erg s}^{-1}\)). However, the measured properties of VHE PWN display a large intrinsic scatter, and the physical size of the nebula can be strongly modified by the local interstellar environment. We conclude that PSR J2032+4127 remains a plausible candidate for the power source driving TeV J2032+4130 and note that it may be worthwhile to search for extended TeV nebulae around other known TeV binary systems—although the formation of TeV J2032+4130 may only be possible due to the exceptionally long orbital period and large eccentricity of the binary system, which allows PSR J2032+4127 to spend much of its orbit effectively as an isolated pulsar.

X-ray and gamma-ray monitoring of PSR J2032+4127/MT91 213 will continue. PSR B1259–63/LS 2883 produces bright gamma-ray flares in the days and months after periastron, and it ejects rapidly moving plasma clumps generated by the interaction of the pulsar with the stellar disk (Pavlov et al. 2015). Similar phenomena may occur in the case of PSR J2032+4127/MT91 213. The ongoing observing campaigns therefore provide a rare opportunity to completely sample the high-energy behavior of this system around periastron, which will not be repeated until approximately 2067.

VERITAS is supported by the U.S. Department of Energy, the U.S. National Science Foundation, the Smithsonian Institution, and by NSERC in Canada. We acknowledge the excellent work of the support staff at the Fred Lawrence Whipple Observatory and at collaborating institutions in the construction and operation of VERITAS.

We acknowledge Fermi and Swift GI program grants 80NSSC17K0648 and 80NSSC17K0314.

The MAGIC Collaboration thanks the funding agencies and institutions listed in: https://magic.mpp.mpg.de/ack_201805.

Facilities: Swift-XRT, VERITAS, MAGIC.

ORCID iDs

W. Benbow @ https://orcid.org/0000-0003-2098-170X
R. Bird @ https://orcid.org/0000-0002-4596-8563
A. Furniss @ https://orcid.org/0000-0003-1614-1273
G. H. Gillanders @ https://orcid.org/0000-0001-8763-6252
D. Hanna @ https://orcid.org/0000-0002-8513-5603
P. Kaaret @ https://orcid.org/0000-0002-3638-0637
D. Kieda @ https://orcid.org/0000-0003-4785-0101
M. Krause @ https://orcid.org/0000-0001-7595-0914
G. Maier @ https://orcid.org/0000-0001-9868-4700
R. Mukherjee @ https://orcid.org/0000-0002-3223-0754
A. N. Otte @ https://orcid.org/0000-0002-5955-6383
N. Park @ https://orcid.org/0000-0002-4282-736X
M. Pohl @ https://orcid.org/0000-0001-7861-1707
E. Pueschel @ https://orcid.org/0000-0002-0529-1973
G. T. Richards @ https://orcid.org/0000-0002-1408-807X
M. Santander @ https://orcid.org/0000-0001-7297-8217
I. Sushch @ https://orcid.org/0000-0002-2814-1257
D. A. Williams @ https://orcid.org/0000-0003-2740-9714
References

Bednarek, W., Banasifskis, P., & Sitarek, J. 2018, JPhG, 45, 015201
Brun, R., & Rademakers, F. 1997, NIMPA, 389, 81
Coe, M. J., Steele, I. A., Ho, W. C. G., et al. 2017, ATel, 10920, 1
Dubus, G. 2013, A&ARv, 21, 64
Fomin, V. P., Stepianian, A. A., Lamb, R. C., et al. 1994, APh, 2, 137
Kirk, J. G., Ball, L., & Skjæraasen, O. 1999, APh, 10, 31
Maier, G., & Holder, J. 2017, Proc. ICRC (Busan), 35, 747
Park, N. & The VERITAS Collaboration 2015, Proc. ICRC (The Hague), 34, 771
Susluch, I., & Böttcher, M. 2014, JHEAp, 3, 18
VERITAS & MAGIC Collaborations 2017, ATel, 10810, 1