SUₚ(2) Lattice Gauge Theory

G. Bimonte – Universidad de Zaragoza
A. Stern – University of Alabama
P. Vitale – Università di Napoli

Deposited 04/22/2019

Citation of published version:

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP. Published by the American Physical Society.
SU\(_q(2)\) lattice gauge theory

G. Bimonte, \(^*\) A. Stern, \(^\dagger\) and P. Vitale\(^\ddagger\)

The Erwin Schrödinger International Institute for Mathematical Physics, Fasteurgasse 6/7, A-1090 Wien, Austria

(Received 16 February 1996)

We reformulate the Hamiltonian approach to lattice gauge theories such that, at the classical level, the gauge group does not act canonically, but instead as a Poisson-Lie group. At the quantum level, the symmetry gets promoted to a quantum group gauge symmetry. The theory depends on two parameters: the deformation parameter \(\lambda\) and the lattice spacing \(a\). We show that the system of Kogut and Susskind is recovered when \(\lambda \to 0\), while QCD is recovered in the continuum limit (for any \(\lambda\)). We, thus, have the possibility of having a two-parameter regularization of QCD. [S0556-2821(96)02913-X]

PACS number(s): 11.15.Ha, 12.38.Gc

I. INTRODUCTION

There has been some interest recently in developing a \(q\)-deformed Yang-Mills theory [1]. One motivation for this activity is the possibility of breaking the standard gauge symmetry of Yang-Mills theories without the introduction of Higgs fields. The attempts in finding a \(q\)-deformed gauge theory discussed previously appear to be rather involved. They often require the development of differential structures on quantum groups. In another approach, which is the one we shall report on here, one may \(q\)-deform gauge theories on the lattice, and then take the continuum limit. However, as we shall show, this leads to a negative result. That is, after applying the procedure we recover ordinary gauge theory in the continuum limit. Thus, rather than a \(q\)-deformed Yang-Mills theory, we have the possibility of a two-parameter regularization of QCD, the two parameters being the deformation parameter \(\lambda\) and the lattice spacing \(a\). This situation may also be of interest, since it could then happen that certain physical quantities may converge faster in the two-parameter space than they do for the case of a single parameter \(a\).

In our approach we start with the Hamiltonian formulation of lattice gauge theories due to Kogut and Susskind [2]. The dynamics for that system is given in terms of rigid rotators located at the links of the lattice. There the Poisson structure which is taken for the rotors is the usual one; i.e., it is written on the cotangent bundle of the relevant group. Recently, an alternative Poisson structure (and Hamiltonian) for the rigid rotator was found [3]. (Also see [4].) In the new formulation, rotations are not canonically implemented, but rather they are Lie-Poisson symmetries [5]. Since Lie-Poisson symmetries are known to be promoted to quantum group symmetries after quantization [6], the rotation group gets deformed to a quantum group. The lattice analogue of the rotation symmetry is gauge symmetry, and thus if we utilize this alternative Poisson structure to describe the rigid rotators on the lattice, we obtain a quantum group gauge symmetry upon quantization.

In Sec. II we review the standard Hamiltonian formulation of lattice gauge theories [2]. For simplicity we shall limit our discussion to SU(2) gauge theories in the absence of fermions. Then the Hamiltonian dynamics can be written on a product space consisting of rigid rotors, modulo the space of SU(2) gauge transformations. As stated above, to each such rotator one associates the standard Poisson structure, which is written on the cotangent bundle of SU(2). Physically, a rotator is attached to each link on the lattice, while gauge transformations correspond to points on the lattice. The Hamiltonian for the theory is required to be gauge invariant and to reduce to the QCD Hamiltonian in the limit of zero lattice spacing, while gauge transformations are required to be canonical in the classical theory and are generated by Gauss law constraints.

We next review the alternative classical Hamiltonian formulation of the rigid rotator [3,4] in Sec. III. There the six-dimensional phase space is taken to be the SL(2,C) group manifold. As in the standard formulation, the Hamiltonian is invariant under left and right SU(2) transformations (which contain ordinary rotations). As stated previously, these transformations do not correspond to canonical symmetries, but rather they are Lie-Poisson symmetries. In the system given here we introduce a parameter \(\lambda\) (the ‘‘deformation parameter’’), and the standard Hamiltonian formalism for the rotator is recovered in the limit \(\lambda \to 0\).

The alternative Hamiltonian formulation of the rigid rotator is applied to lattice gauge theories in Sec. IV. We thereby deform the Kogut-Susskind Hamiltonian dynamics in a way which preserves the SU(2) gauge symmetry of the classical theory, but which replaces canonical symmetry transformations by Lie-Poisson transformations. As in the Kogut-Susskind system, rotator degrees of freedom are assigned to each link on the lattice and gauge transformations are associated with each point on the lattice. However, now we shall describe the rotator degrees of freedom in terms of SL(2,C) variables. In addition to the parameter \(a\) denoting the lattice spacing, our theory possesses the deformation parameter \(\lambda\) and we require that the Kogut-Susskind Hamiltonian formalism is recovered in the limit \(\lambda \to 0\). We shall show that our system yields SU(2) gauge theory in the continuum limit even when the deformation parameter is different from zero.
In Sec. V we make some preliminary remarks about the quantization of this system. When Lie-Poisson symmetries are present in the classical theory the standard practice is to apply the method of deformation quantization [7]. Fixing the quantum dynamics using the method of deformation quantization requires writing down a star product on the space of classical observables. This is, in general, a difficult task and shall not be attempted here. Instead, we shall only demand, as is usually done, that the SU(2) Poisson-Lie group symmetry of the classical theory gets replaced upon quantization by an SU_q(2) quantum group symmetry [6]. Since an SU_q(2) matrix is attached at each point on the lattice, we in fact end up with an SU_q(2) gauge symmetry. The quantum analogues of the SL(2,C) matrices are quantum double matrices which are then associated with each link on the lattice. The commutation relations for the quantum double matrices are required to be covariant under SU_q(2) gauge transformations, while the quantum Hamiltonian is invariant.

After this work was completed we learned of a series of papers by Frolov [8] where a similar system is discussed. It differs from ours in the nature of gauge transformations. For us, all link variables transform in an identical fashion at any particular site, as in the spirit of Kogut and Susskind. As a result of this it is easy to write down the Wilson loop operators, but difficult to give an explicit expression for the gauge transformation rule for the link variables, as in the spirit of Kogut and Susskind. As a result of this it is easy to write down the Wilson loop operators. The quantum Hamiltonian is invariant.

The phase space for a single rotator is spanned by angular momentum variables \(j_a \) and an SU(2) matrix \(u \) with Poisson brackets given by

\[
\{ j_a, j_b \} = \epsilon_{abc} j_c, \tag{1}
\]

\[
\{ j_a, u \} = \frac{i}{2} \sigma_a u, \tag{2}
\]

with the Poisson brackets of matrix elements of \(u \) with themselves being zero. \(\sigma_a \) are Pauli matrices. The brackets for \(u \) and \(j_a \) are preserved under the transformation

\[
u_L^j u \nu_R^j, \tag{3}
\]

\[
u_L^j \sigma_a u \nu_L^j \sigma_a = u \nu_L^j \sigma_a u \nu_R^j \sigma_a \nu_R, \tag{4}
\]

where \(\nu_L \) and \(\nu_R \) are independent SU(2) matrices. It follows that Eqs. (3) and (4) are canonical transformations.

Physically, we are to suppose that a rotator [with Poisson brackets given by Eqs. (1) and (2)] is attached to each link on a three-dimensional cubic lattice, while gauge transformations [analogous to those in Eqs. (3) and (4) parametrized by \(\nu_L \) and \(\nu_R \)] are associated with the points on the lattice. We make this statement more precise below.

Following Ref. [2], an arbitrary point on a lattice will be denoted by a vector \(\tilde{r} \), while a link connecting point \(\tilde{r} \) to a neighboring point in the direction \(\tilde{m} \) is denoted by \((\tilde{r}, \tilde{m}) \). Here, \(\tilde{m} \) can be one of the six unit vectors running along the lattice. For each link \((\tilde{r}, \tilde{m})\), we have the phase space variables

\[
u(\tilde{r}, \tilde{m}) \in SU(2) \quad \text{and} \quad j_a(\tilde{r}, \tilde{m}). \tag{5}
\]

The inverse of \(u(\tilde{r}, \tilde{m}) \) is obtained by traversing the link \((\tilde{r}, \tilde{m})\) in the \(-\tilde{m}\) direction: i.e.,

\[
u(\tilde{r}, \tilde{m})^\dagger = \nu(\tilde{r} + a \tilde{m}, -\tilde{m}), \tag{6}
\]

\(a \) being the lattice spacing. The phase space for SU(2) lattice gauge theory is the set of all variables (5). Their nonvanishing Poisson brackets are given by

\[
\{ j_a(\tilde{r}, \tilde{m}), j_b(\tilde{r}, \tilde{m}) \} = \epsilon_{abc} j_c(\tilde{r}, \tilde{m}), \tag{7}
\]

\[
\{ j_a(\tilde{r}, \tilde{m}), u(\tilde{r}, \tilde{m}) \} = \frac{i}{2} \sigma_a u(\tilde{r}, \tilde{m}), \tag{8}
\]

for all links \((\tilde{r}, \tilde{m})\).

The Poisson brackets (7) and (8) must yield the standard Poisson structure for Yang-Mills theory in the continuum limit: i.e.,

\[
\{ A_i^a(x), E_j^b(y) \} = \delta_{ij} \delta_{ab} \delta^3(x - y), \tag{9}
\]

where \(A_i^a(x) \) are Yang-Mills potentials and \(E_j^b(y) \) are the electric field strengths. In order to recover these brackets from Eqs. (7) and (8), one interprets \(u(\tilde{r}, \tilde{m}) \) according to

\[
u(\tilde{r}, \tilde{m}) = \exp \left(i a g \frac{\sigma_a}{2} A_i^a(\tilde{r}) \tilde{m}_i \right). \tag{10}
\]

Then \(u(\tilde{r}, \tilde{m}) \) goes to \(1 + i a g \sigma_a(2) A_i^a(\tilde{r}) \tilde{m}_i \) when \(a \to 0 \). \(j_a(\tilde{r}, \tilde{m}) \) is interpreted as the line integral of the electric field along the link \((\tilde{r}, \tilde{m})\). Thus,

\[
\tilde{j}_a(\tilde{r}, \tilde{m}) = - \frac{a^2}{g} E_i^a(\tilde{r}) \tilde{m}_i. \tag{11}
\]

Using Eq. (8) we then get

\[
\{ A_i^a(\tilde{r}), E_j^b(\tilde{r}) \} \to \frac{1}{a^2} \delta_{ij} \delta_{ab}, \quad a \to 0, \tag{12}
\]

which agrees with Eq. (9). [From Eq. (7) the Poisson brackets of \(E(\tilde{r}) \) with itself go like \(1/a^2 \) which as a density distribution vanishes in the continuum limit.]

Gauge transformations are associated with points on the lattice. At the point \(\tilde{r} \) we define

\[
u(\tilde{r}) \in SU(2). \tag{13}
\]
As we are in the Hamiltonian formulation of the theory, the gauge transformations are time independent. Gauge transformations on the phase space variables \(u(\vec{r}, \vec{m}) \) and \(j_a(\vec{r}, \vec{m}) \) correspond to

\[
\begin{align*}
 u(\vec{r}, \vec{m}) & \to v(\vec{r})^\dagger u(\vec{r}, \vec{m}) v(\vec{r} + a\vec{m}), \\
 j_a(\vec{r}, \vec{m}) & \to \sigma_a v(\vec{r})^\dagger j_a(\vec{r}, \vec{m}) \sigma_a v(\vec{r}).
\end{align*}
\]

The transformation (13) is consistent with Eq. (6). Upon comparing with Eqs. (3) and (4), it is evident that Eqs. (13) and (14) are canonical transformations.

The next task is to write down the Hamiltonian. The requirements are that it be gauge-invariant and also that it reduces to the standard field theory Hamiltonian in the limit of zero lattice spacing. Concerning the first requirement, an obvious set of gauge-invariant quantities are the kinetic energies of the rotators. Indeed, the sum of all such kinetic energies is one ingredient \(H_0 \) in the Kogut-Susskind Hamiltonian:

\[
H_0 = \frac{g^2}{2a} \sum_{\vec{r}, \vec{m} > 0} j_a(\vec{r}, \vec{m}) j_a(\vec{r}, \vec{m}),
\]

where \(\vec{m} > 0 \) indicates that the sum is only over ’’positive directions’’ of \(\vec{m} \). The constants \(g \) and \(a \) represent the gauge coupling and lattice spacing, respectively. The Hamiltonian (15) cannot be the full story since it leads to a trivial system with all rotators being noninteracting. Furthermore, in the limit of zero lattice spacing, \(H_0 \) only gives the electric field contribution to the QCD Hamiltonian. It is well known that the magnetic field contribution can come from Wilson loop variables constructed on the lattice. For this we let \(\Gamma_{(\vec{r}, \vec{m}, \vec{n})} \) denote a square plaquette connecting the point \(\vec{r} \) to its nearest neighbors in the lattice along the \(\vec{m} \) and \(\vec{n} \) directions. We then denote the associated Wilson loop by \(W(\Gamma_{(\vec{r}, \vec{m}, \vec{n})}) \). It is given by

\[
W(\Gamma_{(\vec{r}, \vec{m}, \vec{n})}) = \text{Tr} \ u(\vec{r}, \vec{m}) u(\vec{r} + a\vec{m}, \vec{n}) u(\vec{r} + a\vec{n}, \vec{m})^\dagger u(\vec{r}, \vec{n})^\dagger.
\]

From Eq. (13) it is clear that Eq. (16) is gauge invariant for all \(\vec{r}, \vec{m}, \vec{n} \). It is also clear that terms such as Eq. (16) introduce nontrivial interactions between the rotators. Upon writing \(u(\vec{r}, \vec{m}) \) according to Eq. (10), it has been shown that \(W(\Gamma_{(\vec{r}, \vec{m}, \vec{n})}) \) yields the usual magnetic field contribution to the action (associated with the plaquette \(\Gamma_{(\vec{r}, \vec{m}, \vec{n})} \)) upon taking the continuum limit \(a \to 0 \). More specifically, upon expanding to fourth order in \(a \) we get that

\[
W(\Gamma_{(\vec{r}, \vec{m}, \vec{n})}) \to \text{Tr} \left[1 - \frac{1}{2} g^2 a^2 \left[F_{(\vec{r}, \vec{m}, \vec{n})} \right]^2 \right] \quad \text{as} \quad a \to 0,
\]

where \(F_{(\vec{r}, \vec{m}, \vec{n})} = F_{ij}^{(\vec{r})}(\vec{r}) (\sigma_j d(\vec{r}))^2 \vec{m} \vec{n} \), \(F_{ij} = \epsilon_{ijk} B_k^{(\vec{r})} \) being the magnetic field strength tensor. We can finally express the Kogut-Susskind Hamiltonian according to

\[
H = H_0 + H_1,
\]

\[
H_1 = \frac{1}{ag^2} \sum_{\vec{r}} \left[W(\Gamma_{(\vec{r}, \vec{m}, \vec{n})}) + W(\Gamma_{(\vec{r}, \vec{m}, \vec{n})})^* - 4 \right].
\]

The sum in \(H_1 \) is over all plaquettes. The coefficients in \(H_0 \) and \(H_1 \) were chosen so that \(H \) has the correct continuum limit: i.e.,

\[
H \to \frac{1}{2} \sum_{\vec{r}} a^3 \left[E_i(\vec{r}) E_i(\vec{r}) + B_i(\vec{r}) B_i(\vec{r}) \right] \quad \text{as} \quad a \to 0.
\]

A final ingredient in this system (which turns out to be a source of difficulty for us when we deform the system) is due to the fact that the gauge symmetries (13) and (14) imply the existence of first class constraints. These constraints \(G_a(\vec{r}) \approx 0 \) are defined at points on the lattice and they generate the gauge symmetry. Their nonvanishing Poisson brackets may be given by

\[
\{ G_a(\vec{r}), j_b(\vec{r}, \vec{m}) \} = \epsilon_{abc} j_c(\vec{r}, \vec{m}),
\]

\[
\{ G_a(\vec{r}), u(\vec{r}, \vec{m}) \} = \frac{i}{2} \sigma_a u(\vec{r}, \vec{m})
\]

A solution for \(G_a(\vec{r}) \) is

\[
G_a(\vec{r}) = \sum_m j_m(\vec{r}, \vec{m}),
\]

the sum being over all links connected to the lattice point \(\vec{r} \). In the continuum limit this gives the usual Gauss law constraint. In the quantum theory we must impose that the operator corresponding to \(G_a(\vec{r}) \) annihilates all physical states.

III. ALTERNATIVE HAMILTONIAN FORMULATION OF THE RIGID ROTATOR

We next review the alternative classical Hamiltonian formulation of the rotator given in Ref. [3]. There, it was shown that the six-dimensional phase space describing a rigid rotator could be spanned by the set \(\{ d^{(-1)} \} \) of \(2 \times 2 \) complex unimodular matrices which constitute ’’classical double variables.’’ Thus, the phase space is \(\text{SL}(2,\mathbb{C}) \).

The Hamiltonian of Ref. [3] was a function of only \(\text{Tr} \ d^{(-1)} d^{(-1)*} \). More specifically, it was given by

\[
H_{\text{rot}}(\lambda) = \frac{1}{2\lambda} (\text{Tr} \ d^{(-1)} d^{(-1)*} - 2),
\]

where \(\lambda \) is a constant which plays the role of a deformation parameter. This Hamiltonian is invariant under left and right \(\text{SU}(2) \) transformations:

\[
d^{(-1)} \to v_L^* d^{(-1)*} v_R, \quad v_L, v_R \in \text{SU}(2),
\]

and these transformations are analogous to separate rotations of the body and space axes of a rigid rotator.
Although the Hamiltonian is invariant under Eq. (24), these transformations do not correspond to canonical symmetries because of a nontrivial quadratic Poisson structure which was assumed for \(d^{(-)} \). Using tensor product notation the Poisson brackets can be compactly written as
\[
\{d^{(-)}, d^{(-)}\} = -d^{(-)}d^{(-)}r - r'd^{(-)}d^{(-)}, \quad (25)
\]
Here \(d_1^{(-)}, d_2^{(-)} \), and \(r \) denote \(4 \times 4 \) matrices with \(d^{(-)} = d^{(-)} \otimes 1 \), \(d^{(-)} = 1 \otimes d^{(-)} \), and \(r \) given by
\[
r = \frac{i\lambda}{4}
\begin{pmatrix}
1 & -1 & 0 & 0 \\
-1 & 4 & -1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\] (26)

The Poisson brackets (25) are skew symmetric. Furthermore, the \(r \) matrix (26) is known to satisfy the classical Yang-Baxter relations which ensures that the Jacobi identity holds for Eq. (25).

It is clear that the transformations (24) do not preserve the Poisson brackets and hence they are not canonical symmetries. They are instead Lie-Poisson symmetries. For this we now associate a certain Poisson structure to the \(SU(2) \) matrices \(v_L \) and \(v_R \) involved in the transformations (24). These Poisson brackets are chosen to be compatible with those of the observables \(d^{(-)} \) [cf. Eq. (25)] along with the transformation (24). They are given by
\[
\{v_A, v_{A'}\} = \{r_{12}, v_A v_{A'}\}, \quad A = L, R \quad (27)
\]
\[
\{v_L, v_R\} = 0, \quad (28)
\]
\[
\{v_{A'}, d^{(-)}\} = 0, \quad (29)
\]
where \(v_A = v_A \otimes 1 \), and \(v_{A'} = 1 \otimes v_A \). To show compatibility we note that the left-hand side of Eq. (25) transforms to
\[
\{v_L d^{(-)} v_R, v_L d^{(-)} v_R\}, \quad (30)
\]
which we now can compute using Eq. (25) and Eqs. (27)–(29). We get
\[
-v_{L'} d^{(-)} v_R d^{(-)} v_{R'} - v_{L'} d^{(-)} v_R v_{L'} d^{(-)} v_R.
\] (31)

Using Eq. (24), the right-hand side of Eq. (25) also transforms to Eq. (31), thus showing that the brackets (27–29) for \(v_A \) are compatible with Eq. (25) and the transformation (24). Consequently, Eq. (24) is a Lie-Poisson transformation.

We next proceed with the Hamiltonian equations of motion. For this, the Poisson brackets (25) are insufficient because the Hamiltonian for the system involves \(d^{(-)} \), as well as \(d^{(-)} \). We, therefore, need to know the Poisson brackets of \(d^{(-)} \) with \(d^{(-)} \). From [3] we have
\[
\{d^{(-)}, d^{(-)}\} = -d^{(-)} d^{(-)} r - r' d^{(-)} d^{(-)} , \quad (32)
\]
where \(d^{(+)} = d^{(-)} \). The variables \(d^{(\pm)} \) along with the Poisson brackets (25) and (32) (which are consistent with the Jacobi identity) define the classical double. Using Eqs. (23), (25), (26) one obtains the equation of motion
\[
d \frac{d}{dt} d^{(-)} d^{(-)} = \frac{i}{2\lambda} [d^{(-)} d^{(-)}]_{\alpha\beta}, \quad (33)
\]
where \([A]_{\alpha\beta} = \text{traceless part of } 2 \times 2 \text{ matrix } A, \ i.e., [A]_{\alpha\beta} = A - \frac{\lambda}{4} \text{Tr}(A) \times 1 \).

To make the connection with the isotropic rigid rotator system, we write the \(SL(2, \mathbb{C}) \) matrix \(d^{(-)} \) as the product of an element of the \(SU(2) \) subgroup and an element of the Borel subgroup \(SB(2, \mathbb{C}) \). We do this as follows:
\[
d^{(-)} = \zeta(-) u, \quad u \in SU(2), \quad \zeta(-) = \begin{pmatrix} x_0 & 0 \\ x_- & x_0^{-1} \end{pmatrix} \in SB(2, \mathbb{C}), \quad (34)
\]
where \(x_0 \) is real and \(x_- \) is complex. The map from \(SU(2) \times SB(2, \mathbb{C}) \) to \(SL(2, \mathbb{C}) \) is two-to-one. The Poisson brackets (25) for the classical double variables \(d^{(-)} \) are recovered with the following choice of brackets for \(u \) and \(\zeta(-) \):
\[
\{u, u\} = [r, uu], \quad (35)
\]
\[
\{\zeta(-), \zeta(-)\} = -[r, \zeta(-) \zeta(-)], \quad (36)
\]
\[
\{\zeta(-), u\} = -\zeta(-) ru, \quad (37)
\]
Upon substituting Eq. (34) into the equation of motion (33), we get
\[
\frac{d}{dt} u \ u^\dagger - i \frac{\lambda}{2} [\zeta(-)^\dagger \zeta(-)]_{\alpha\beta} = -\zeta(-)^{-1} \frac{d}{dt} \zeta(-). \quad (38)
\]
The left-hand-side of Eq. (38) is traceless and anti-Hermitian, while the right-hand-side is an element of the \(SB(2, \mathbb{C}) \) Lie algebra. It follows that the left- and right-hand sides must separately vanish, leading to
\[
\frac{d}{dt} u \ u^\dagger = \frac{i}{2} J_a \sigma_a, \quad \text{where } J_a = \frac{1}{2\lambda} \text{Tr}(\zeta(-)^\dagger \zeta(-)) \sigma_a, \quad (39)
\]
along with
\[
\frac{d}{dt} \zeta(-) = 0. \quad (40)
\]
\(J_a \) in Eq. (39) can now be interpreted as the physical angular momentum of the isotropic rotator. Since they are functions...
of only \(\lambda^{(-)} \) and \(\lambda^{(-)\dagger}\), from Eq. (40) they are conserved. Now, if we associate the SU(2) matrix \(u\) with the orientation of the rotator (or the transformation between space and body axes), then Eq. (39) gives the desired result, namely, that the rigid body undergoes a uniform precession.

We thus have an alternative Hamiltonian description of the isotropic rotator. It is canonically inequivalent to the usual one with Poisson brackets (1) and (2) and Hamiltonian equal to the square of the angular momentum. The above Hamiltonian formulation of the isotropic rotator is instead a deformation of the usual Hamiltonian formulation, where as we stated earlier, \(\lambda\) plays the role of the deformation parameter. The usual Hamiltonian formulation is recovered when \(\lambda\) goes to zero, which we refer to as the “canonical limit.” For this to happen we must first show how to express the matrix \(\lambda^{(-)}\) in terms of the canonical angular momentum variables \(j_a\) [as opposed to the variables \(J_a\) which do not obey the canonical Poisson bracket relations (1)]. We write

\[
\lambda^{(-)} = \exp(i\lambda e^a j_a),
\]

where \(e^a\) are generators of SB(2,C). They can be expressed in terms of Pauli matrices \(\sigma_a\) as

\[
e^a = \frac{1}{2}(i\sigma_a + \epsilon_{ab3}\sigma_b).
\]

[Actually, for the purpose of taking the canonical limit, we only need that relation (41) holds up to second order in \(\lambda\).

Equation (41) is equivalent to assigning \(x_0\) and \(x_-\) in Eq. (34) according to

\[
x_0 = \exp\left(-\frac{\lambda j_3}{2}\right), \quad x_- = -2\frac{j_1 + i j_2}{j_3} \sinh\left(\frac{\lambda j_3}{2}\right).
\]

Now, to lowest order in \(\lambda\), the Hamiltonian (23) reduces to the square of the angular momentum

\[
H_{\text{rot}}(\lambda \rightarrow 0) = \frac{1}{2} j_a j_a,
\]

while, using Eq. (34), the Poisson brackets (35)–(37) go to

\[
\{j_a, j_b\}_{\lambda \rightarrow 0} = \epsilon_{abc} j_c,
\]

\[
\{j_a, u\}_{\lambda \rightarrow 0} = \frac{i}{2} \epsilon_{a\beta\gamma} u_{\beta\gamma},
\]

\[
\{u, u\}_{\lambda \rightarrow 0} = 0,
\]

which agree with Eqs. (1) and (2). We thus arrive at the canonical description of an isotropic rotator with the moment of inertia set equal to 1. The Hamiltonian (23) and the Poisson brackets (35)–(37), therefore, define a one-parameter deformation of the canonical description of the isotropic rigid rotator. When \(\lambda \neq 0\), the chiral transformations are Lie-Poisson symmetries. They reduce to canonical symmetries when \(\lambda \rightarrow 0\). In that limit, the variables \(u\) and \(j_a\) transform in the usual way, i.e., as in Eqs. (3) and (4).

IV. DEFORMATION OF SU(2) LATTICE GAUGE THEORY

We are now ready to deform the Kogut-Susskind Hamiltonian dynamics in a way which preserves the SU(2) gauge symmetry of the classical Hamiltonian function, but which replaces the canonical symmetry transformations by Lie-Poisson transformations. As before, we assign rotator degrees of freedom to each link on the lattice. However, now we shall describe the rotator degrees of freedom in terms of classical double variables

\[
d^{(-)}(\vec{r}, \vec{m}) \in \text{SL}(2,\mathbb{C}),
\]

rather than the variables \(j_a(\vec{r}, \vec{m})\) and \(u(\vec{r}, \vec{m})\).

To each classical double variable \(d^{(-)}(\vec{r}, \vec{m})\), we assign the Poisson structure given by Eqs. (25) and (32). Thus, we replace the set of Poisson brackets (7) and (8) by

\[
\{d^{(-)}(\vec{r}, \vec{m}), d^{(-)}(\vec{r}, \vec{m})\} = -d^{(-)}(\vec{r}, \vec{m}) d^{(-)}(\vec{r}, \vec{m}) - r \quad d^{(-)}(\vec{r}, \vec{m}) d^{(-)}(\vec{r}, \vec{m}),
\]

\[
\{d^{(-)}(\vec{r}, \vec{m}), d^{(-)}(\vec{r}, \vec{m})\} = -d^{(-)}(\vec{r}, \vec{m}) d^{(-)}(\vec{r}, \vec{m}) - r \quad d^{(-)}(\vec{r}, \vec{m}) d^{(-)}(\vec{r}, \vec{m})
\]

for all links \((\vec{r}, \vec{m})\), and where

\[
d^{(+)}(\vec{r}, \vec{m}) = d^{(-)}(\vec{r}, \vec{m})^{-1}.
\]

In analogy with Eq. (6), we obtain the inverse of \(d^{(-)}(\vec{r}, \vec{m})\) by traversing the link \((\vec{r}, \vec{m})\) in the \(-\vec{m}\) direction: i.e.,

\[
d^{(-)}(\vec{r}, \vec{m})^{-1} = d^{(-)}(\vec{r} + a\vec{m}, -\vec{m})\]

In Eqs. (49) and (50), we once again resort to tensor product notation with

\[
d^{\pm}(\vec{r}, \vec{m}) = d^{\pm}(\vec{r}, \vec{m}) \otimes 1,
\]

and the \(r\) matrix given by Eq. (26). Since the \(r\) matrix depends on \(\lambda\) we are introducing a new parameter (in addition to \(a\)) to the lattice theory. We shall require that the Kogut-Susskind Hamiltonian formalism is recovered in the limit \(\lambda \rightarrow 0\). This is in addition to the requirement that the Hamiltonian function be gauge invariant.

With regard to gauge invariance, gauge transformations are associated with points on the lattice, just as was the case in the Kogut-Susskind formalism. Thus, at the point \(\vec{r}\) we once again define \(\nu(\vec{r}) \in SU(2)\). Now, in analogy with Eq. (24), we define gauge transformations of the phase space variables \(d^{\pm}(\vec{r}, \vec{m})\) according to

\[
d^{\pm}(\vec{r}, \vec{m}) \rightarrow \nu(\vec{r}) d^{\pm}(\vec{r}, \vec{m}) \nu(\vec{r} + a\vec{m})\].

As was true for a single rotator, such transformations are not canonical. Instead, they are Lie Poisson. In this regard, we attach a product Poisson structure to the gauge degrees of freedom $v(\vec{r})$:

$$\{v(\vec{r}), v(\vec{r}')\} = [r, v(\vec{r}) v(\vec{r}')],$$

(54)

and Poisson brackets between v’s evaluated at different points on the lattice are zero. This Poisson structure is compatible with the Poisson brackets (49) and (50), along with the transformations (53). Hence, transformations (53) are Lie-Poisson transformations.

From Eq. (23) we already know how to write down the gauge-invariant deformation of the first term H_0 in the Kogut-Susskind Hamiltonian. It is just

$$H_0(\lambda) = \frac{g^2}{2a\lambda^2} \sum_{\vec{r}, \vec{m} > 0} \left[\text{Tr} \ d^{(-)}(\vec{r}, \vec{m}) d^{(-)}(\vec{r}, \vec{m}) \right] - 2 \right],$$

(55)

We can make a decomposition of the SL(2,C) matrix $d^{(-)}(\vec{r}, \vec{m})$ in terms of SU(2) and SB(2,C) matrices in an identical manner to what was done in the previous section: i.e.,

$$d^{(-)}(\vec{r}, \vec{m}) = \mathcal{L}^{(-)}(\vec{r}, \vec{m}) \ u(\vec{r}, \vec{m}), \ u(\vec{r}, \vec{m}) \in \text{SU}(2),$$

$$\mathcal{L}^{(-)}(\vec{r}, \vec{m}) \in \text{SB}(2,C).$$

(56)

The Poisson brackets (49) for the classical double variables $d^{(-)}(\vec{r}, \vec{m})$ are recovered with the following choice of brackets for $u(\vec{r}, \vec{m})$ and $\mathcal{L}^{(-)}(\vec{r}, \vec{m})$:

$$\{u(\vec{r}, \vec{m}), u(\vec{r}', \vec{m}')\} = [r, u(\vec{r}, \vec{m}) u(\vec{r}', \vec{m})],$$

(57)

$$\{\mathcal{L}^{(-)}(\vec{r}, \vec{m}), \mathcal{L}^{(-)}(\vec{r}', \vec{m}')\} = -[r, \mathcal{L}^{(-)}(\vec{r}, \vec{m}) \mathcal{L}^{(-)}(\vec{r}', \vec{m})],$$

(58)

$$\{\mathcal{L}^{(-)}(\vec{r}, \vec{m}), u(\vec{r}', \vec{m}')\} = -\mathcal{L}^{(-)}(\vec{r}, \vec{m}) \ r \ u(\vec{r}', \vec{m}').$$

(59)

Furthermore, we make the SB(2,C) matrix depend on λ as in the previous section: i.e.,

$$\mathcal{L}^{(-)}(\vec{r}, \vec{m}) = \exp[i \kappa e^a j_a(\vec{r}, \vec{m})].$$

(60)

It then follows that $H_0(\lambda)$ is a deformation of H_0, i.e., in analogy with Eq. (44), we have

$$H_0(\lambda \to 0) = H_0.$$

Also, the transformations (53) reduce to the canonical transformations (13) and (14) in the limit.

It is also straightforward to write down the gauge-invariant deformation of the second term H_1 in the Kogut-Susskind Hamiltonian. For this we construct a set of Wilson loop variables $W^\lambda(\Gamma_{\vec{r}, \vec{m}, \vec{n}})$ using $d^{(-)}(\vec{r}, \vec{m})$:

$$W^\lambda(\Gamma_{\vec{r}, \vec{m}, \vec{n}}) = \text{Tr} \ d^{(-)}(\vec{r}, \vec{m}) d^{(-)}(\vec{r} + a \vec{n}, \vec{n}) \times d^{(\pm)}(\vec{r} + a \vec{n}, \vec{m}) d^{(\pm)}(\vec{r}, \vec{n}) \dagger.$$

(61)

From transformations (53) it easily follows that $W^\lambda(\Gamma_{\vec{r}, \vec{m}, \vec{n}})$ is gauge invariant. In this regard, Eq. (61) is not unique, as we can arbitrarily replace the different factors $d^{(\pm)}$ with $d^{(\mp)}$ in the formula for $W^\lambda(\Gamma_{\vec{r}, \vec{m}, \vec{n}})$. On the other hand, we shall show that for the choice (61) we recover the correct continuum limit ($a \to 0$) of SU(2) gauge theory. Concerning the canonical limit $\lambda \to 0$, upon using Eqs. (56) and (60), we get that $d^{(\pm)}(\vec{r}, \vec{m}) \to u(\vec{r}, \vec{m})$ and, hence,

$$W^{\lambda \to 0}(\Gamma_{\vec{r}, \vec{m}, \vec{n}}) = W(\Gamma_{\vec{r}, \vec{m}, \vec{n}}).$$

Thus, $W^\lambda(\Gamma_{\vec{r}, \vec{m}, \vec{n}})$ is a gauge-invariant deformation of $W(\Gamma_{\vec{r}, \vec{m}, \vec{n}})$.

We can now write down the gauge-invariant deformation of the Kogut-Susskind Hamiltonian. It is

$$H(\lambda) = H_0(\lambda) + H_1(\lambda),$$

$$H_1(\lambda) = \frac{1}{ag^2} \sum \left[W^\lambda(\Gamma_{\vec{r}, \vec{m}, \vec{n}}) + W^\lambda(\Gamma_{\vec{r}, \vec{m}, \vec{n}}) \ast 4 \right].$$

(62)

The sum in H_1 is over all plaquettes.

The final ingredient in this system is the analogue of the Gauss law constraints $G^\lambda_\sigma(\vec{r}) \approx 0$. They generate the gauge symmetry (53) and thus their nonvanishing Poisson brackets should be of the form

$$\{G^\lambda(\vec{r}), d^{(\pm)}(\vec{r}, \vec{m})\} = X(\vec{r}) d^{(\pm)}(\vec{r}, \vec{m}).$$

(63)

We want that $G^\lambda(\vec{r}) \to G_\sigma(\vec{r}) \ (\sigma \approx 2)$ when $\lambda \to 0$. We have been unable to find an explicit solution for $G^\lambda(\vec{r})$ expressed in terms of $\mathcal{L}^{(-)}(\vec{r}, \vec{m})$ and $u(\vec{r}, \vec{m})$ which is consistent with these requirements.

Above, we have shown that the canonical limit ($\lambda \to 0$) of our model is the system of Kogut and Susskind. We now show that the continuum limit ($a \to 0$) of our model is standard SU(2) gauge theory (for any value of λ). In this regard, we once again write $u(\vec{r}, \vec{m})$ in terms of Yang-Mills potentials $A^\mu_a(\vec{x})$ according to Eq. (10). In addition, using Eqs. (11) and (41), we get that

$$\mathcal{L}^{(-)}(\vec{r}, \vec{m}) = \exp \left[- i \kappa e^a j_a(\vec{r}, \vec{m}) \right].$$

(64)

Now, from the Poisson brackets (59) we get that

$$\{E^a_i(\vec{r}), A^\mu_j(\vec{r})\} e^a \otimes \sigma^\mu \to \frac{2}{\lambda a} \delta_{ij} r,$$

(65)

when $a \to 0$. Because the classical r matrix can be written $r = \lambda/2 \ e^a \otimes \sigma^a$, we recover the canonical Poisson brackets (12) for SU(2) gauge theory. [These are the only nonvanishing Poisson brackets, as $\{E, E\}$ and $\{A, A\}$ go as a^n, $n > -3$, which as a density distribution vanishes in the continuum limit.]
It remains to take the continuum limit of the Hamiltonian $H(\lambda)$, Eq. (55). In this regard we note that the term $H_0(\lambda)$ can be written

$$H_0(\lambda) = \frac{g^2}{2\alpha} \sum_{\vec{r},\vec{m} > 0} \left[\text{Tr} \ z(\vec{r},\vec{m}) z(\vec{r},\vec{m})^\dagger \right] - 2. \quad (66)$$

Then using Eq. (64) we find that $H_0(\lambda)$ yields the electric field energy of SU(2) gauge theory

$$H_0(\lambda) = \frac{1}{2} \sum_{\vec{r}} a^3 E_1^a(\vec{r}) E_1^a(\vec{r}), \quad (67)$$

as $a \to 0$. Furthermore, $H_1(\lambda)$ in Eq. (62) yields the magnetic field energy of SU(2) gauge theory but this requires some algebra to prove. To proceed we use Eqs. (10) and (64) to write the link variables $d^{(-)}(\vec{r},\vec{m})$ according to

$$d^{(-)}(\vec{r},\vec{m}) = \exp \left[-i \lambda \frac{a^2}{g} e^{a} E_1^a(\vec{r}) \hat{m}_i \right] \times \exp \left[i a g \frac{\sigma^a}{2} A_2^a(\vec{r}) \hat{m}_i \right], \quad \hat{m} > 0, \quad (68)$$

where we find it more convenient to evaluate A and E at the central point \vec{r} of the link (\vec{r},\vec{m}). We shall assume that Eq. (68) is valid for $\hat{m} > 0$. Because of Eq. (52) it cannot then also be valid for $\hat{m} < 0$. Instead, from Eq. (52) we get that

$$d^{(-)}(\vec{r},\vec{m}) = d^{(-)}(\vec{r} + a \hat{m}, -\hat{m})^{-1}$$

$$= \exp \left[-i \lambda \frac{a^2}{g} e^{a} E_2^a(\vec{r}) \hat{m}_i \right] \times \exp \left[-i \lambda \frac{a^2}{g} e^{a} E_1^a(\vec{r}) \hat{m}_i \right], \quad \hat{m} < 0. \quad (69)$$

We now consider the plaquette Γ_0 in the 1-2 plane centered at $\vec{x} = (x_1, x_2)$. Upon substituting Eqs. (68) and (69) into (61) and taking $\vec{r} = (x_1 - (a/2), x_2 - (a/2))$, $\hat{m} = (1,0)$, and $\hat{n} = (0,1)$, we get the following expression for $W^{\lambda}(\Gamma_0)$:

$$W^\lambda(\Gamma_0) = \text{Tr} \left[\exp \left(-i \lambda \frac{a^2}{g} e^a E_1^a(x_1, x_2 - a/2) \right) \right.$$

$$\times \exp \left(i a g \frac{\sigma^a}{2} A_1^a(x_1, x_2 - a/2) \right) \times \exp \left(-i \lambda \frac{a^2}{g} e^a E_2^a(x_1 + a/2, x_2) \right) \times \exp \left(i a g \frac{\sigma^a}{2} A_2^a(x_1 + a/2, x_2) \right) \times \exp \left(-i a g \frac{\sigma^a}{2} A_1^a(x_1, x_2 + a/2) \right) \times \exp \left(-i \lambda \frac{a^2}{g} e^a E_1^a(x_1, x_2 + a/2) \right) \times \exp \left(-i a g \frac{\sigma^a}{2} A_1^a(x_1, x_2 + a/2) \right)$$

where we used $d^{(+)}(\vec{r},\hat{n}) = d^{(-)}(\vec{r} + a\hat{n}, -\hat{n})$ which follows from Eqs. (51) and (52). After expanding this expression to fourth order in a, some work shows that we recover the Kogut-Susskind result, i.e.,

$$W^\lambda(\Gamma_0) \to \text{Tr} \left[1 - \frac{1}{2} g^2 a^4 (F_{12}(\vec{x}))^2 \right] \quad \text{as } a \to 0, \quad (71)$$

which is the same as in Eq. (17). Hence, $H_1(\lambda)$ yields the magnetic field energy

$$H_1(\lambda) = \frac{1}{2} \sum_{\vec{r}} a^3 B_1^a(\vec{r}) B_1^a(\vec{r}) \quad \text{as } a \to 0, \quad (72)$$

and the total Hamiltonian $H(\lambda)$ reduces to that of SU(2) Yang-Mills theory in the continuum limit.

V. QUANTIZATION

We now consider the quantization of the lattice theory discussed in the previous section. When Lie-Poisson symmetries are present in the classical theory, the standard practice is to apply the method of deformation quantization [7], where we do not identify the quantum-mechanical commutation relations with $i\hbar$ times the corresponding classical Poisson brackets, but only demand that they agree in the limit $\hbar \to 0$. Also, we do not identify the quantum Hamiltonian $\mathbf{H}(\lambda)$ function (with classical variables replaced by their corresponding quantum operators) with the classical Hamiltonian function $H(\lambda)$. We, instead, only demand that $\mathbf{H}(\lambda)$ reduces to $H(\lambda)$ in the limit $\hbar \to 0$.

Fixing the quantum dynamics using the method of deformation quantization requires writing down a star product on the space of classical observables [7]. This is generally a difficult task and shall not be attempted here. Instead, we shall only demand that the SU(2) Poisson-Lie group gauge symmetry which is present in the classical theory gets replaced upon quantization by a gauge symmetry which is associated with the quantum group SU_q(2) [6]. The latter can be defined in terms of 2×2 matrices $\{T\}$ whose matrix elements T_{ij} are not c numbers. Rather, they satisfy the commutation relations

$$RTT = TTR,$$

with $T = T \otimes 1$, $T = 1 \otimes T$, and R, the quantum R matrix, given by

$$R_{12} = T_{12}^{(1)} T_{21}^{(2)}.$$
where \(q \) is a complex number. In addition to Eq. (73), \(T \) satisfies a unitarity condition \(T^T T = 1 \) and also a deformed unimodularity condition \(\text{det}_q T = 1 \), where \(\text{det}_q T = T_{11} T_{22} - q T_{12} T_{21} \). The latter constraint is possible because \(\text{det}_q T \) so defined commutes with all matrix elements \(T_{ij} \). \(R \) satisfies the quantum Yang-Baxter equation. If we set \(q = e^{i \frac{\pi}{2}} \), then in the limit \(h \to 0 \), \(R \) tends to \(1 - i h r + O(h^2) \), and consequently Eq. (73) reduces to

\[
[T, T] = i h [r, TT] + O(h^2).
\]

We thereby recover the algebra (27) of the SU(2) matrices \(U \) parametrizing the Lie-Poisson symmetries.

In quantizing the lattice theory described in the previous section, we would like to define an SU\(_q\)(2) matrix \(T(\hat{r}) \) at each point \(\hat{r} \) on the lattice. Then the quantum analogue of the Poisson brackets (54) is

\[
RT(\hat{r})T(\hat{r}) = T(\hat{r})T(\hat{r})R,
\]

and we assume that SU\(_q\)(2) matrices at different points commute.

With regards to the SL(2,\(C \)) matrix \(d^{(-)} \), we replace it by the \(2 \times 2 \) matrix \(D^{(-)} \) having operators as matrix elements. The quantum analogues of the Poisson brackets (25) and (32) are [3]

\[
R^{(+)}D^{(-)}D^{(-)} = D^{(-)}D^{(-)}R,
\]

(77)

\[
R^{(-)}D^{(-)}D^{(+)} = D^{(+)}D^{(-)}R,
\]

(78)

where \(D^{(+)} = D^{(-)}^{-1} \), \(R^{(+)} = R^T \) (the superscript \(T \) denoting transpose), and \(R^{(-)} = R^{-1} \). The matrices \(D^{(\pm)} \) along with the commutation relations (77) and (78) define the quantum double. In the limit \(h \to 0 \), \(R^{(+)} \) and \(R^{(-)} \) tend to \(1 - i h r^2 + O(h^2) \) and \(1 + i h r + O(h^2) \), respectively, and the algebra given in Eqs. (25) and (32) is recovered from Eqs. (77) and (78) to first order in \(h \). In addition, the commutation relations (77) and (78) are covariant under left and right SU\(_q\)(2) transformations [3]:

\[
D^{(-)} \to T^{(L)}_L D^{(-)} T^{(R)}_R, \quad T^{(L)}_L, T^{(R)}_R \in \text{SU}_q(2).
\]

(79)

Here, both \(T^{(L)}_L \) and \(T^{(R)}_R \) satisfy commutation relations (73) and we assume that matrix elements of \(T^{(L)}_L \) commute with matrix elements of \(T^{(R)}_R \).

In the lattice theory, we assign a matrix \(D^{(-)}(\hat{r}, \hat{m}) \) to each link \((\hat{r}, \hat{m})\) on the lattice. Then the quantum analogues of the Poisson brackets (49) and (50) are

\[
R^{(+)}D^{(-)}(\hat{r}, \hat{m})D^{(-)}(\hat{r}, \hat{m}) = D^{(-)}(\hat{r}, \hat{m})D^{(-)}(\hat{r}, \hat{m})R,
\]

(80)

\[
R^{(-)}D^{(-)}(\hat{r}, \hat{m})D^{(+)}(\hat{r}, \hat{m}) = D^{(+)}(\hat{r}, \hat{m})D^{(-)}(\hat{r}, \hat{m})R,
\]

(81)

where \(D^{(+)}(\hat{r}, \hat{m}) = D^{(-)}(\hat{r}, \hat{m})^{-1} \), and we assume that \(D \) matrices associated with different links commute. Now gauge transformations on the quantum double variables are given by

\[
D^{(-)}(\hat{r}, \hat{m}) \to T(\hat{r}) D^{(-)}(\hat{r}, \hat{m}) T(\hat{r} + a \hat{m}),
\]

(82)

and as they are of the same form as Eq. (79) they preserve the commutation relations [Eqs. (80) and (81)]. The commutation relations for \(D^{(\pm)}(\hat{r}, \hat{m}) \) are therefore covariant under SU\(_q\)(2) gauge transformations.

We next must write down the quantum analogues of \(H_0(\lambda) \) and \(H_1(\lambda) \). Our requirements are that these terms are invariant under SU\(_q\)(2) gauge transformations and also that they reduce to \(H_0(\lambda) \) and \(H_1(\lambda) \) when \(h \to 0 \).

We begin with \(H_0(\lambda) \). It represents the sum of kinetic energies of the rotators. The quantum analogue \(H_0(\lambda) \) is known [3]. To write it we need to introduce the “quantum” trace \(\text{Tr}_q \) [9]. \(\text{Tr}_q \) of a \(2 \times 2 \) matrix \(M = [M_{ij}] \) is defined according to

\[
\text{Tr}_q M = q M_{11} + q^{-1} M_{22}.
\]

(83)

Unlike the usual trace, \(\text{Tr}_q \) does not have the general property of invariance under cyclic permutations. It does, however, serve as an “adjoint invariant” for SU\(_q\)(2). By this we mean

\[
\text{Tr}_q T^{-1} M T = \text{Tr}_q M,
\]

(84)

where \(T \) satisfies the commutation relations (73) and we assume that matrix elements of \(T \) commute with those of \(M \). The relation (84) can be explicitly verified using the \(2 \times 2 \) representations for \(T \). From Eq. (84) it follows that

\[
\text{Tr}_q D^{(-)}(\hat{r}, \hat{m}) D^{(-)}(\hat{r}, \hat{m})^\dagger
\]

is invariant under SU\(_q\)(2) gauge transformations (82). Then, a possible choice for \(H_0(\lambda) \) is

\[
H_0(\lambda) = \frac{g^2}{2 a \lambda^2} \sum_{\hat{r}, \hat{m}, \hat{n}, > 0} [\text{Tr}_q D^{(-)}(\hat{r}, \hat{m}) D^{(-)}(\hat{r}, \hat{m})] - 2],
\]

(85)

as it reduces to Eq. (55) when \(h \to 0 \).

Using the quantum trace, it is also easy to write down a quantum analogue of the Wilson loop variables \(W^\lambda(\Gamma(\hat{r}, \hat{m}, \hat{n})) \) defined in Eq. (61). We write

\[
W^\lambda(\Gamma(\hat{r}, \hat{m}, \hat{n})) = \text{Tr}_q D^{(-)}(\hat{r}, \hat{m}) D^{(-)}(\hat{r} + a \hat{m}, \hat{n})
\]

\[
\times D^{(-)}(\hat{r} + a \hat{m} + a \hat{n}, - \hat{m}) D^{(-)}(\hat{r} + a \hat{n}, - \hat{n}).
\]

(86)
From Eq. (84) it follows that $W^\lambda(\Gamma(\tilde{r},\tilde{m},\tilde{n}))$ is invariant under $SU_q(2)$ gauge transformations (82). The quantum version of the Hamiltonian (62) is then

$$H(\lambda) = H_0(\lambda) + H_1(\lambda),$$

$$H_1(\lambda) = \frac{1}{ag^2} \sum_{\ell} [W^\lambda(\Gamma(\tilde{r},\tilde{m},\tilde{n})) + W^\lambda(\Gamma(\tilde{r},\tilde{m},\tilde{n}))^\dagger - 4].$$

(87)

The sum in H_1 is again over all plaquettes.

ACKNOWLEDGMENTS

We would like to thank Y. Gunal for useful discussions. We would also like to thank G. Marmo, P. Michor, and the members of the Schrödinger Institute, where this work was started, for their hospitality. A.S. was supported in part by U.S. Department of Energy under Contract No. DE-FG05-84ER40141.

