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General coupling of strings to the low-energy effective theory 
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A. Stern 
Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487 

(Received 23 December 1987) 

Starting from the field equations for supergravity coupled to super-Yang-Mills theory, we derive 
the classical equations of motion for spinning strings in an arbitrary background. These equations 
are also obtained from an action principle based on a generalized Wess-Zumino term. 

I. INTRODUCTION 

Considerable attention has been given to the low­
energy effective-field-theory formulation of superstrings. 
Most notably, the arguments of anomaly cancellations 1 

are based on such a formulation. 
The effective field theory can be described in terms of 

an action S0 , which gives the low-energy dynamics for 
the massless modes of the superstring. The dynamics is 
essentially that of supergravity coupled to a super-Yang­
Mills theory in ten dimensions. 2 

In principle, S0 can be derived starting from a first­
quantized description of superstrings. The procedure in­
volves integrating out all of the massive modes for the 
string and performing a derivative expansion. From the 
couplings of a string to a background field, it was shown3 

that the field equations for the massless modes can be ob­
tained upon demanding conformal invariance in the 
quantum theory. 

Conversely, in this paper we shall be interested in 
deriving the dynamics of spinning strings in an arbitrary 
background, starting from the field equations of the 
effective field theory. Our approach shall be to introduce 
"stringlike" sources to (the bosonic sector of) the effective 
theory. Various identities (e.g., Bianchi identities) for the 
fields can then be exploited to constrain the dynamics of 
the sources. A minimal set of equations of motion for a 
spinning string in a supergravity background result. 
They reduce to standard string equations of motion in the 
absence of a nontrivial background. 

The above procedure of deriving the equations of 
motion from the field equations is a very old one. It was 
most notably used to derive the geodesic equation for a 
test particle in general relativity, starting from the Ein­
stein field equations. 4 The procedure was also adapted to 
finding the motion of particles in a Yang-Mills field, 5 as 
well as extended to the dynamics of spinning particles in 
a gravitational field. 6 

Long ago, the equations of motion for a Nambu string 
coupled to general relativity were derived, starting from 
the Einstein equations, by Giirses and Giirsey. 7 Our 
work is a generalization of this. The procedure is dis-
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cussed in Sec. II. We attach five different quantities to 
the string. They are the standard momentum pa 
(a=O, l) and spin angular momentum sa currents, as 
well as a "Yang-Mills" current Ia and scalar densities X 
and c which couple to the dilaton and antisymmetric ten­
sor field, respectively. Identities on the fields give a 
minimal set of equations of motion for these quantities. 

The dynamics of these quantities, however, is not com­
pletely determined by the field equations. With this in 
mind, we formulate an action principle for the coupled 
system in Sec. III. The procedures is not unique. Our 
approach is based on a generalized Wess-Zumino term, 8 

as well as a free-string-action formulation given by 
Balachandran, Lizzi, Sparano, and Sorkin. 9 The general­
ized Wess-Zumino term is invariant under Yang-Mills 
transformations, as well as local Lorentz transformations. 
(The Yang-Mills-invariant expression was written down 
by Nepomechie. 10) The generalized Wess-Zumino term 
contains the couplings to all the massless modes, except 
for the vielbein fields and the dilaton. The interactions 
are uniquely given by the symmetries of the theory, and 
are characterized by a single dimensionless coupling con­
stant, which is quantized in the quantum theory. Anoth­
er feature of this action is that because of the specific 
form for the currents, additional novel constraints (not 
present in the minimal equations) are obtained. One of 
them implies that the string behaves as a superconductor. 
This property has been noted previously. 11 

II. STRING EQUATIONS OF MOTION 
FROM SUPERGRAVITY FIELD EQUATIONS 

We first briefly review the bosonic sector of the low­
energy effective theory, i.e., supergravity coupled to 
super-Yang-Mills theory in ten dimensions. 2 The fields 
of the theory are the following: the vielbein e AM• the 
spin connection (J)M [taking values in the Lorentz algebra 
SO(9,l)], the Yang-Mills connection AM (taking values in 
some Lie algebra G), the antisymmetric tensor field B MN• 

and the scalar dilaton </J. Here, M,N, ... denote space­
time indices, while A,B, ... are tangent or flat-space in­
dices. The low-energy effective Lagrangian L 0 is given 
by 

3628 © 1988 The American Physical Society 
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(2.l) 

where K is the gravitational coupling constant in ten di­
mensions. (The Yang-Mills coupling constant has been 
absorbed in the definition of <p.) eM A denotes the inverse 
vielbein and e =det(e AM). The Lorentz and Yang-Mills 
curvature two-forms are defined as usual, i.e., 
R =dw+oi and F =dA + A 2, respectively. The three­
form H =¼HMNPdxM /\dxN /\dxP contains the Lorentz 
and Yang-Mills Chern-Simons forms, i.e., 

H =dB -wf+wrM, B =½BMNdxM /\dxN' 
(2.2) 

wf=Tr(w/\R -tw3 ), wjM=Tr( A /\F-½A 3 ). 

His invariant under Yang-Mills transformations, as well 
as local Lorentz transformations. Under an infinitesimal 
Yang-Mills transformation, 

6A =dA+[ A,A], 6B = -Tr A /\dA, (2.3) 

where the infinitesimal parameter A takes values in the 
Lie algebra tJ. Under an infinitesimal local Lorentz 
transformation, 

6w=d0+[w,0], 6B =Trw/\d0, (2.4) 

where the infinitesimal parameter e takes values in the 
Lorentz algebra. 

The field equations resulting from variations in BNP• 
Ap, wp, ecp, and <f, are 

(/3 )NP=a [_!_HMNP]=o (2.5) B - M <f,2 ' 

({3 l=D (Al l.!.._FMPl _.2.. K112e F HMNP=0 (2.6) 
A - M <p 2 <f,2 MN • 

(/3 l=D (w>(eEMP)_.2_ Ke R HMNP=0 (2.7) 
w - M 2 <f,2 MN • 

P _ t M PN AB K2 P (f3e) c=- 2 ee c(E )ABRMN- 2 e cLo=0, (2.8) 

/3 -1a aM 1 i ¢,=--; M(e <f,)--;;;(aM<f,) 

KI12 MN 3K MNP 
+-8-TrFMNF + 8<f, HMNPH =0 , (2.9) 

respectively. Here (EMN) AB =½(eM A eNB -eN A eMB) and 
D <A> and D <w> are the covariant derivatives associated 
with Yang-Mills and local Lorentz transformation, re­
spectively. When acting on matrices in the adjoint repre-

sentation of the appropriate group, D Mr A>= a M + [ AM, ] 
and DM(w)=aM +[wM, ]. 

Now consider introducing sources into the field equa­
tions. Since there are five field equations, we can define a 
set of five sources. We thus replace the zeros on the 
right-hand side of Eqs. (2.5)-(2.9) with currents, denoted 
by jMN, iM, sM, tM A, and p, respectively, 

({3B)NP=jNP, (2.5') 

(f3Al=tP, (2.6') 

(/3.,l =Sp ' (2.7') 

(f3e)pc=tpc' (2.8') 

13¢,=P · (2,9') 

The currents iM (sM) are tJ valued (Lorentz-algebra 
valued), and transform covariantly under the action of 
the Yang-Mills group (local Lorentz group). The remain­
ing quantities jMN = - jNM, tM A, and pare invariant un­
der Yang-Mills transformations. 

The currents are subject to constraints which follow 
from identities on the fields. For example, from 
aNaM(eHMNP /<f,2 )-=0 and (2.5'), we have 

aNjNP=0. (2.10) 

The identity DprA>nM(A>(eFMP /<p)=0 plus (2.6') yields 

DN( A)LN + fKl/2F MNjMN =0 . (2.11) 

When we apply Dp(wl to (2. 7'), we find 

D (wlsN+ 9KR 1•MN+~[R EMN]-0 N T MN 2 MN• - · (2.12) 

The last term in (2.12) can be written in terms of the 
current tM A, since, from (2. 8' ), 

; [RMN•EMN]AB=eAMtMB-eBMtMA . (2.13) 

A further condition on the currents results from the re­
quirement of local coordinate transformation invariance. 
Under an infinitesimal coordinate transformation 
(parametrized by EN), 

BAM=aNAMEN+ ANaMEN, 

6wM=aNwMEN+wNaMEN, 

6eAM=aNeAMEN+eANaMEN' 

BBMp=aNBMpEN+BNPaMEN+BMNapEN, 

6<p=aN<f,~. 

(2.14) 

Requiring that L 0 is invariant means that (up to a total 
divergence) 

(2.15) 
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For transformations (2.14), the invariance condition reads 
1/2 

[DM<w>(p, )MA ]e AN+<Pe )MA TAMN+ ;2 p.,,aN<f,+ TTr[(PA )MFNM 1-½ Tr[(P.,)MRNM ]+fK(PB )MPHN!efP =0 ' (2.16) 

where -rAMN is the torsion tensor, i.e., -rAMN=DM<wJe AN-DN<wJe AM· In deriving (2.16), we have used the previously 
discussed identities. Equation (2.16) is itself an identity for sourceless supergravity [from Eqs. (2.5)-(2.9)]. However, 
when sources are present, it leads to the following condition on the currents: 

1/2 

(DM(w)tM A )e AN+ tM A TA MN+ ;2 paN<f, + TTr(iMF NM)-½ Tr(sMRNM )+fKjMPH NMP =0 . (2.17) 

Finally, let the current sources originate from strings; i.e., we require jMN, LM, sM, tM A, and p to have support on a 
two-dimensional surface M, which we parametrize by aa, a=O, 1. a 0 is a time parameter. (For simplicity, we shall 
only consider closed strings, so Mis topologically R XS 1.) We denote the string space-time coordinates by zM =zM(a ). 
Additional variables must be defined on the string surface if the sources are to be nonzero. For this purpose we intro­
duce the scalar densities c(a) and X(a), a <;-valued vector Ja(a) on M, a Lorentz-algebra-valued vector sa(a) on M, 
ancf the set of vectors PA a( a). Now set 

jMN(x)=K J Md 2a 62(x -z (a ))c(a katJaaZMapZN, (2.18) 

LM(x)=K312 f d 2a62(x -z(a))la(a)aaZM (2.19) M , 

sM(x)=K2 f Md 2a 62(x -z(a))Sa(a)aaZM, (2.20) 

tMA(x)=K2 f d 2a62(x-z(a))PAa(a)aaZM, (2.21) 
M 

p(x)=K2 f d 2a62(x -z(a))X(a), (2.22) 
M 

where € 01 =-€10 =1 and aa=a;aaa. The vectors la, sa, and pAa can be interpreted as "Yang-Mills," spin, and 
momentum currents, respectively. 

The dynamics of the above string variables are constrained by Eqs. (2.10)-(2.12) and (2.17). Equation (2.10) implies 
that c(a )=c is a constant. From Eqs. (2.11) and (2.12), we get 

Da<A>1a+9cF(a)=O, (2.23) 

(Da(w)sa)AB +9cR (a)AB +<eAMpBa-eBMP Aa)aaZM=O' (2.24) 

respectively. The covariant derivatives on Mare defined according to 

D (A)=a ,,MD(A) D (w)=a ,,MD (w) 
a -a- M• a -a- M, (2.25) 

while the contracted Yang-Mills and Lorentz curvatures are 

F(a)=f€atJaaZMap2NFMN(z), R (a)=f€afJaaZMapZNRMN(z). (2.26) 

The final condition (2.17) leads to 

(Da(w)p Aa)e AN+P AaaaZMTAMN+ ;2 xaN<P+½Tr(JaFNM)aaZM-½Tr(SaRNM)aaZM+ 98c €afJaaZMap2NHNMP=O. 

Equations (2.23), (2.24), and (2.27) comprise a minimal set 
of equations of motion for a string coupled to an arbi­
trary effective-field-theory background. Since they in­
volve divergences they do not completely specify the dy­
namics of the system. To remedy this situation we shall 
formulate an action principle for strings in the next sec­
tion. Upon extremizing the action we will then recover 
Eqs. (2.23)-(2.25). 

If we turn off the external fields ( AM = w M = B MN= 0, 
<f, = const) and set e AM =BAM, the system of equations 
reduces to the following: 

aala=O, 

aaSa AB +aaZApBa_aaZBP Aa=O' 

(2.28) 

(2.29) 

(2.30) 

(2.27) 

Equation (2.28) states that the Yang-Mills current is con­
served, while Eq. (2.30) gives the conservation of the 
momentum current on the string. Upon using (2.30), we 
see that (2.29) corresponds to the conservation of the to­
tal angular momentum current on the string. Equations 
(2.29) and (2.30) are the standard equations of motion for 
a free spinning string. 12 

III. ACTION PRINCIPLE 

We shall now rederive equations of motion (2.23), 
(2.24), and (2.27) starting from an action principle. We 
begin by examining the Wess-Zumino term8 for a string 
in the absence of external fields: 
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sYM=_n_f Tr(dgg-1)3' 
WZ 121T N 

(3.1) 

where we have introduced a dynamical variable 
g =g(a0,a1,a2 ), which takes values in the Yang-Mills 
group G. n is a dimensionless constant which is required 
to have integer values for a consistent quantum theory. 
Nis a three-dimensional disc (parametrized by a 0,a1,a2 ), 

with aN = M. The equation of motion resulting from 
infinitesimal left variations on g (i.e., 6g = -Ag) in Eq. 
(3.1) is 

(3.2) 

On comparing Eq. (3.2) with Eq. (2.28), we see that we 
can identify the Yang-Mills current according to 
la~EaPapgg-1. 

This result is modified when external fields are present. 
Nepomechie10 wrote down the coupling to Yang-Mills 
potentials. It necessarily contains a coupling to the an­
tisymmetric tensor field B MN as well. Along with the 
infinitesimal Yang-Mills transformation (2.3), one in­
cludes 6g = -Ag. Then the sum of Eq. (3.1 ), 

sYM=_!!__J Tr(dgg- 1 /\A) andSB=_4n f B(z), 
I 41T M 1T M 

(3.3) 

is invariant under such a combined transformation. 
Although the sum of the three terms si~, SlM, and 

SB is gauge invariant, it is not invariant under local 
Lorentz transformations. This is because B MN trans­
forms nontrivially under the latter [cf. Eq. (2.4)]. In or­
der to rectify this situation we need to add the following 
two terms to Nepomechie's action: 

Sf=--4n f Tr(dh h- 1 /\(J)), 
1T M 

(3.4) 
SL =--n-f Tr(dh h- 1 )3 

WZ 121T N • 

Here we have introduced a new dynamical variable 
h =h (a0,a1,a2 ), in analogy tog, where h takes values in 
the Lorentz group. To the local Lorentz transformations 
defined in Eqs. (2.4), we attach 6h = -Sh. Then the to­
tal action 

Swz =Si~ +S~z +slM+sf+sB 

is invariant under both Yang-Mills and local Lorentz 
transformations. This invariance can be made explicit by 
writing S wz in the form 

Swz=-4n f Lwz, 
1T N 

(3.5) 
Lwz=H(z)-Tr[DtA>gg- 1 /\F-f(DtA>gg- 1)3] 

+Tr[Dt"'>hh -I /\R -f(Dt"'lhh- 1)3], 

where vt Alg =dg + Ag and vtw>h =dh +(J)h. Now using 
dH=TrF2-TrR 2, it is easy to see that Lwz is a closed 
(but not exact) three-form. This is a generic property for 
Wess-Zumino terms. 

We note that Eq. (3.5) contains cotJplings to all fields 
but the vielbein and the dilaton. From the coupings to 
AM, (J)M, and BMN• we ascertain 

n 
C=---

181T 

(3.6) 

The string equation of motion (2.23) can now be easily 
recovered from the action (3.5). Variations in g, 
6g = -Ag, lead to 

(D(Algg-1)2-F=0. (3.7) 

Now use the identity 

v<Al(D(Algg-1 )=(D(A>gg-1 )2+F (3.8) 

and the identifications (3.6) to obtain the result. 
An analogous equation is obtained by performing vari­

ations in h. This however does not lead to the desired re­
sult, because the last term in Eq. (2.24) is not recovered. 
That is, the string described by only the Wess-Zumino 
term (3.5) has no momentum current PA a_ From Eqs. 
(2.8') and (2.21), the momentum current couples to the 
vielbein field. Since the Wess-Zumino term contains no 
such coupling, an additional term SKE must be included 
in the action. 

SKE should reduce to the free string action for a trivial 
vielbein field. Furthermore, it must be a functional of the 
group variable h, as well as zM (and e AM), in order that 
we recover Eq. (2.24) upon minimizing with respect to h. 
We note that this requires a nonstandard formulation for 
the free string action. 

Let us first examine the limit of no external fields (and 
flat space). In this limit, Eq. (2.24) reduced to the 
angular-momentum-conservation equation (2.29). We 
wish to obtain the latter by varying h in some action con­
taining S~z- The appropriate action was given by 
Balachandran, Lizzi, Sparano, and Sorkin. 9 It is, name­
ly, S~z plus 

SKE[h,z]=f ½'l:.ABdZA/\dZB (3.9) 
m 

where 

(3.10) 

and TAB are SO(9, 1) generators. a' is the usual Regge 
slope parameter. 

For n =0, corresponding to no Wess-Zumino term, it 
was shown9 that the action (3.9) is equivalent to the 
Nambu-Goto string action. [The proof involves the elim­
ination of h (which is an auxiliary variable when n =0) 
from the action.] In addition, upon replacing T 09 in Eq. 
(3.9) by other Lorentz generators new classes of strings 
were found. 9 

Now consider n=;60. By minimizing the action 
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SKE +s{.,,2 (in the flat-space limit) with respect to h, we 
find 

(3.11) 

Equation (3.11) is equivalent to (2.29) after making the 
identification 

P a_ I'<:' cafJa,,z.B 
A -T"'-AB'- p- • (3.12) 

The momentum current is conserved as a result of 
minimizing the action in z A. 

The generalization of Eq. (3.9) to curved space is 
straightforward. Coordinate transformation invariance is 
ensured upon including the vielbein fields according to 

SKE[h,z,e]=f ½I.ABeA/\eB, (3.13) 
M 

where eA=eAM(z)dzM. From the field equation (2.8'), 
obtained by minimizing with respect to e AM• and Eq. 
(2.21), we now get the following assignment for the 
momentum current: 

p a_ I I, eB cafJa,,zM 
A --r AB M"' p- • 

(3.14) 

Equation (3.14) reduces to (3.12) in the flat-space limit. 
Now minimizing the total action SKE[h,z,e]+Swz, 

with respect to h, gives 

0= _!!.__[(D(w>hh -l )2 -R] AB 
41T 

+ ½ (I.Ace c /\ e B - I. Bee c /\ e A ) . (3.15) 

Upon using the identity D("''(D("'>hh - 1 )=(D("'>hh - 1 )2 

+R, and the definition (3.14) for the momentum current, 
we recover the string equation of motion (2.24). 

It remains to obtain Eq. (2.27). For this purpose, let us 
vary zP in SKE[h,z,e]+Swz· The resulting equation of 
motion is 

a [6LKE ]- 6LKE =_!!.__EafJa 7.M[Tr(R D (w)hh-1)-Tr(F D (A>gg-l)+l.a,,zNH 
a Baa2P f,zp 41T er PM fJ PM fJ z p- MNP 

41T AB C a N} --;-(<up) I.Ace MeBN pZ 

=Tr(RpMSa)aa2M-Tr(FpMJU)aa2M- ~ EafJHMNPaa2MapZN-2p Aa(<up )ABeBMaa2M, (3.16) 

where SKE = J Md 2u LKE• and we have substituted equa­
tions of motion (3.7) and (3.15) into the right-hand side of 
(3.16). Equation (3.16) differs from (2.27) only by the fact 
that the former contains no coupling to the dilaton field. 
The standard interaction with the dilaton was proposed 
by Fradkin and Tseytlin. 13 Here we suggest an alterna­
tive. We simply replace LKE by 

2 
gyM L 

K3/2<f,(z) KE ' 

where gyM is the Yang-Mills coupling constant. 
The above prescription is equivalent to multiplying the 

Regge slope parameter a' by <f,(z)K312 /giM· The latter 
reduces to one when cf, attains its vacuum value. We note 
that we recover (in a simple manner) the known result 14 
that a rescaling of cf, by a constant is identical to a 
redefinition of the Regge slope parameter. 

With the above choice of coupling to the dilaton field, 
we identify the scalar density X(u) in Eq. (2.22) according 
to 

Kll2giM 
X(u)= 2e(z) LKE • 

Now upon varying zP in 

2 I 2 gYM 
d u 3/2 LKE +Swz ' 

M K q,(z) 

(3.17) 

(3.18) 

we obtain the equation of motion (2.27). Thus from the 
action (3.18), we recover the full set of minimal equations: 
(2.23), (2.24), and (2.27). 

On the other hand, the particular form for the currents 
[cf. Eq. (3.6)] leads to some extra conditions, not present 
in the minimal set. Let us first examine the Yang-Mills 
current defined in Eq. (3.6). Starting from the identity 

Tr(EafJna(A>gg-lDp( A>gg-lDr (A>gg-1 )::0 ' 

a,/3,r=0,1 (3.19) 

and the equation of motion (3. 7), we arrive at the condi­
tion 

TrF(u)JY(u)=0 (3.20) 

which is not present in the minimal equations. This con­
dition was previously found for strings in interaction with 
Yang-Mills fields. 11 

The interpretation of Eq. (3.20) is as follows: If at a 
point z ( u ) on the string a component Ia( u ) of the 
current is nonzero, it defines a direction in the Lie alge­
bra {;_ By Eq. (3.20), the components of F( u) vanish in 
this direction. There are at most two such directions in 
{;, corresponding to a=O, 1. Furthermore, these direc­
tions change from point to point on the string. If, on the 
other hand, I 0(u)=l 1(u)=0, there are no restrictions on 
the field Fat the point u. 

From the above, if the current I 1 ( u) is not zero, the 
component of the "electric field" F(u) parallel to / 1(u) 
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vanishes at a. The string can be said to superconduct. 
Superconducting strings [with G = U(l)] are of interest 
in the cosmological context. 15 It is thus conceivable that 
the action (3.18) (rewritten in four space-time dimensions) 
might be suitable for discussing such macroscopic, as well 
as microscopic, strings. 

By introducing additional terms involving g in the ac­
tion, we will modify the form of the current 1a in Eq. 
(3.6), and hence the condition (3.20). One such term 
which is commonly included is the nonlinear a-model ac­
tion 

S =-1-f d2av' -yyaP-fr(D (Alg-l)(D (Alg) (3 21) 
a 4).,2 M a f3 • · 

where r ap=aa2MapZM is the induced metric on the 
string, with yaPy pp=Ba 13 and r =det[ r a/31• A can be 
determined by demanding that, in the absence of external 
fields, the quantized theory has a zero beta function. In 
that case, it was found that 16 A.2 = ±41r In. Indeed, it may 
be argued that a consistent quantum theory of the string 
requires the term (3.21). We note that the inclusion of 
(3.21) will alter the definition of the momentum current, 
as well as the Yang-Mills current. 

In addition to the constraint (3.20) on Ia, we can simi­
liarly derive a constraint on the spin current sa based on 
its form [cf. Eq. (3.6)]. From the identity 

Tr(Eaf3Da(wlhh - 1D 13(wlhh - 1D/.,lhh -l )===0 

and the equation of motion (2.24), we get 

_!!__TrR (a )S13=2e (z)P Aaaa2MeMB(S13 )AB. 
41T . 

In flat space, this condition reduces to 

(Sf3)ABaa(zApBa-zBP Aa)=O. 

(3.22) 

(3.23) 

(3.24) 

Equation (3.24) can be interpreted as follows: If the spin 
current sa(a) is not zero, the orbital angular momentum 
current and spin current are separately conserved, at the 
point a, in the direction in the Lorentz algebra parallel to 
sa. 

A final condition not present in the minimal equations 
of motion is 

(3.25) 
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IV, CONCLUDING REMARKS 
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