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Numerical Modelling of the Magnus Force and the
Aerodynamic Torque on a Spinning Sphere in

Transitional Flow

Alexey N. Volkov

Material Science and Engineering Department, University of Virginia, 117 Engineer’s way, Charlottesville, VA
22903, USA

Abstract. Three dimensional transitional flow over a spinning sphere is studied numerically by the direct simulation Monte
Carlo method. The flow is assumed to be steady-state, gas molecules interact with each other as hard spheres and the specular-
diffuse scattering model describes the interaction between molecules and the sphere surface. The translational and rotational
velocities of the sphere is assumed to be perpendicular to each other. The drag coefficient, the Magnus force coefficient and
the torque coefficient are found as functions of the Mach and Reynolds numbers and the dimensionless rotation parameter for
subsonic and supersonic flows. Computational results are compared with the analytical solution for a spinning sphere in free
molecular flow and with available semi-empirical data. The "critical" Knudsen number when the Magnus force is equal to
zero is found as a function of the Mach number.
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INTRODUCTION

It is well known that a lateral force affects a spinning body moving in a gas [1]–[6]. This phenomenon is often called the
Magnus effect and the lateral force is known as the Magnus force. The Magnus force is of great importance for various
applications. For example, it influences trajectories of spinning shells. This effect is also important for geometrically
simplest bodies, e.g. for sphere. A model of spherical particle is a widely used model of solid particles in two-phase
gas-solid flows. Solid particles can gain high angular velocities due to their rebound from solid surfaces. As a result
the Magnus force has a profound effect on the motion of such particles.

In [1] an analytical solution for the lateral force affecting a spinning sphere was found for the continuum flow
regime and low velocities corresponding to the Stokes flow. In later papers (see [2] and references there) corrections to
this analytical solution were obtained for finite Reynolds numbers. In [3] the lateral force was obtained for a spinning
sphere in free molecular flow. Free molecular flow over a general axially symmetric body was considered in [4] and
both the aerodynamic force and torque were calculated. It was found in [5, 4] that in free molecular flow the Magnus
force has the opposite direction as compared with continuum flow. Recently, in [5, 6] the Magnus force on a sphere
in free molecular flow was studied in a more general framework and the last phenomenon was called "the inverse
Magnus effect". In particular, it means that the lateral force in transitional flow depends significantly on the Knudsen
number and for a some "critical" Knudsen number it is equal to zero. The aim of this work is to study the aerodynamic
properties of a spinning sphere in the transitional flow regime and to find the critical Knudsen number.

THE MATHEMATICAL MODEL

A flow of rarefied gas over a homogeneous sphere of radius R is considered. The vector of sphere’s translational
velocity V, the vector of its rotational velocity ω and its homogeneous temperature T are assumed to be constant.
It is also assumed that (1) the gas is rarefied and monoatomic and its flow can be described by the kinetic model
based on the Boltzmann equation; (2) molecules velocity distribution in the free stream is the equilibrium Maxwellian
distribution with constant concentration n∞, velocity V∞ and temperature T∞; (3) the flow is steady-state; (4) gas
molecules interact with each other as hard spheres of diameter d and mass m; (5) the model of specular-diffuse
scattering [7] describes interactions of molecules with the sphere surface and the relaxation temperature in this model
is equal to the temperature T of the sphere; (6) external (gravity) forces affecting gas molecules are negligible.



FIGURE 1. Coordinates (a) and the computational domain (b) used in DSMC simulations of flow over a spinning sphere.

The problem is considered in the frame of reference which is at rest with the center O of the sphere (Fig. 1, a).
Introduce the right cartesian coordinates Oxyz with the basic vectors i, j and k, where the axis Ox directs along the
vector of macroscopic gas velocity against the sphere U∞ = V∞ −V and the axis Oz is perpendicular to the plane of
vectors U∞ and ω. Position of an arbitrary point P at the sphere surface is defined by the radius vector r = Rn, where
n is the unit vector normal to the surface in the point P pointed outward from the sphere. The spherical angles θ and
ε are introduced in order to calculate components of the vector n, so that n = cosθ i+ sinθ cosεj+ sinθ sinεk. Then
the aerodynamic force F and torque M affecting the sphere and the heat flux Q at the sphere surface can be found by
integrating of the stress vector p(n) and the heat flux density q(n) over the sphere surface

F = R2

2π∫
0

π∫
0

p(n)sinθdθdε, M = R3

2π∫
0

π∫
0

n×p(n)sinθdθdε, Q = R2

2π∫
0

π∫
0

q(n)sinθdθdε. (1)

The stress vector p(n) and the heat flux density q(n) can be calculated from the velocity distribution function of gas
molecules f (r,v) (here r and v are the radius-vector and the velocity vector of a molecule). In order to calculate p(n)
and q(n) it is convenient to introduce in the point P at the sphere surface a local frame of reference which moves with
the velocity Vw = V+Rω×n of this point. It this frame of reference a molecule has velocity v′ = v−Vw and

p(n) = −m
∫

v′v′ ·n f ′(Rn,v′)dv′, q(n) = −m
2

∫ (
v′

)2 v′ ·n f ′(Rn,v′)dv′, (2)

where f ′(Rn,v′) = f (Rn,v′ +Vw), ab denotes the tensor production of vectors a and b.
The steady flow is calculated as a limit of the time-dependant solution of the Boltzmann equation [7] at time t → ∞

∂ f
∂ t

+v · ∂ f
∂r

= IB, IB =
d2

2

∫ 2π∫
0

π∫
0

( f ′ f ′1 − f f1)|(v1 −v) ·d|sinϑdϑdϕdv1, (3)

where f = f (v), f1 = f (v1), f ′ = f (v+w), f ′1 = f (v1−w), w = [(v1−v) ·d]d, d = sinϑ cosϕi+cosϑ j+sinϑ sinϕk.
Boundary conditions for equation (3) include the specular-diffuse scattering at the sphere surface [7, 8]

at v′ ·n > 0 : f ′(Rn,v′) = (1−ατ) f ′(n,v′ −2(v′ ·n)n)+ατ
2

πC4 exp

(
− (v′)2

C2

) ∫

v′′·n<0

|v′′ ·n| f ′(Rn,v′′)dv′′, (4)

and the condition in the free stream, where the velocity distribution is assumed to be Maxwellian

f (r,v, t) → f∞(v) at |r| → ∞, f∞(v) =
n∞

(πC∞)3 exp

(
− (v−V∞)2

C2
∞

)
. (5)

Here ατ is the accommodation coefficient, C =
√

2Rμ T , C∞ =
√

2Rμ T∞, Rμ = k/m, k is the Boltzmann’s constant.
The initial condition at t = 0 for the steady-state solution of the problem (3)–(5) is arbitrary. In the simplest case the
uniform velocity distribution f∞(v) can be used as the initial one.

The problem (3)–(5) can be transformed into an appropriate dimensionless form. The dimensionless solution of the
problem depends on the velocity coefficient S∞ = |U∞|/C∞, the Knudsen number Kn∞ = λ∞/R (λ∞ = 1/(

√
2πd2n∞)

a) 



is the mean free path of molecules in the undisturbed flow), the ratio of temperatures T/T∞, the rotation parameter
W = R|ω|/C∞, the angle Θ between vectors of translational U∞ and rotational ω velocities and the accommodation
coefficient ατ . These six parameters are criteria of similarity for the problem (3)–(5). The Mach number M∞ =
|U∞|/

√
γRμ T∞ =

√
γ/2S∞ and the Reynolds number Re∞ = 2Rρ∞|U∞|/μ∞ = 2.51

√γM∞/Kn∞ (γ = 5/3 for the
monoatomic gas, ρ∞ = mn∞, μ∞ = 0.798λ∞ρ∞

√
Rμ T∞ is the dynamic viscosity coefficient in the undisturbed flow)

can be also used instead of S∞ and Kn∞ in the analysis of the dimensionless problem.

FREE MOLECULAR FLOW OVER A SPINNING SPHERE

For the case of free molecular flow over a sphere at λ∞/R � 1 the collision integral IB can be eliminated in equation
(3), and an analytical solution for F, M and Q in the problem (3)-(5) can be obtained. It is well-known [8] that for a
steady free molecular flow over a convex body the distribution function of molecules incident to the body surface is
equal to the distribution function (5) in the free stream, i.e.

at v′ ·n < 0 : f ′(n,v′) =
n∞

(πC∞)3 exp

(
− [v′ − (V∞ −Vw(n))]2

C2
∞

)
. (6)

Then f ′ for reflected molecules can be calculated substituting (6) into (4). Substituting (6) and (4) into (2) one can find

p(n) = pn(n)+pτ(n), (7)

pn(n) = p∞

{
(ατ −2)

[
(1+ erf(Sn))

(
S2

n +
1
2

)
+

Sn√
π

exp(−S2
n)

]
− ατ

2
χ(Sn)

√
T
T∞

}
n, (8)

pτ(n) = p∞
ατ χ(Sn)√

π
[S∞(e− e ·nn)−Weω ×n] , (9)

q(n) = q∞
ατ√

π

[(
S2

2
+

5
4
− T

T∞

)
χ(Sn)− exp(−S2

n)
4

+
W 2

2
(n× eω)2 +S∞We · (n× eω)

]
, (10)

where e and eω are the unit vectors pointed along vectors U∞ and ω, respectively, S = |S∞e−Weω ×n|, Sn =−S∞e ·n,
p∞ = ρ∞C2

∞/2, q∞ = ρ∞C3
∞/2, χ(x) = exp(−x2)+

√
πx [1+ erf(x)], erf(x) = (2/

√
π)

∫ x
0 exp(−y2)dy.

Substituting (7)–(9) into the definition of the aerodynamic force F in (1) one can write

F = FD +FL, FD =
1
2

ρ∞πR2CD|V∞ −V|(V∞ −V), FL =
1
2

ρ∞πR3CL(V∞ −V)×ω, (11)

where FD and FL are the drag and lateral Magnus forces, CD and CL are the drag and Magnus force coefficients

CD =
exp(−S2

∞)√
πS3

∞

(
2S2

∞ +1
)
+

erf(S∞)
S4

∞

(
2S4

∞ +2S2
∞ − 1

2

)
+

2ατ
√

π
3S∞

√
T
T∞

, CL = −4
3

ατ . (12)

The drag coefficient CD in (12) is the same as for the non-rotating sphere [9]. The coefficient CL was found in [3] for
the case U∞ ·ω = 0 and in [4] for the arbitrary orientation of the rotational velocity. In continuum flow at the Stokes
regime when Re∞ � 1 and Reω = R2ρ∞|ω|/μ∞ � 1 the Magnus force coefficient is equal to 2 [1]. Therefore, in free
molecular flow the Magnus force has the opposite direction as compared with continuum Stokes flow.

The aerodynamic torque can be found in the similar manner substituting (7)–(9) into the torque definition in (1):

M = −1
2

ρ∞πR5|ω|2 (Cmeω +Cm⊥eω⊥) , eω⊥ =
e− (e · eω)eω
|e− (e · eω)eω | , (13)

where Cm and Cm⊥ are the coefficients of the torque components which are parallel and perpendicular to the vector ω

Cm =
ατ√
πW

[
I1 + I2 +(I2 −3I1)(e · eω)2] , Cm⊥ =

ατ√
πW

(I2 −3I1)(e · eω)|e− (e · eω)eω |, (14)

I1 =
√

π
2

erf(S∞)
S3

∞

(
S4

∞ +
1
4

)
+

exp(−S2
∞)

2S2
∞

(
S2

∞ − 1
2

)
, I2 =

√
π

erf(S∞)
S∞

(
S2

∞ +
1
2

)
+ exp(−S2

∞). (15)
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FIGURE 2. The drag coefficient CD (a) and the torque coefficient Cm (b) versus the Reynolds number Re∞. Curve 1, M∞ = 0.1;
2 and 8, 0.2; 3 and 9, 0.6; 4 and 5, 1; 6, 1.5; 7 and 10, 2. Curves 1–4, W = 0.1; 5–7, 1. Curves 8–10, CD from the Henderson’s
relations [10].

The torque vector M lies in the plane of vectors U∞ and ω, but M points along ω only if vectors U∞ and ω either
parallel or perpendicular to each other. Formulae (13)–(15) were obtained in another mathematical form in [4].

The heat flux at the surface of a spinning sphere can be found substituting (10) into the definition of Q in (1):

Q = 4ρ∞cpπR2St|V∞ −V|(Tr0 −T∞), (16)

where cp = (5/2)Rμ , St is the Stanton number which does not depend on sphere rotation, Tr0 is the adiabatic
temperature (it is the uniform body temperature for which Q = 0) which depends on the rotation parameter W

St =
ατ

5
√

π
I2
S∞

,
Tr0

T∞
=

Tr00

T∞
+W 2 J2

I2
,

Tr00

T∞
=

J1

I2
, (17)

J1 =
√

π
2

erf(S∞)
S∞

(
S4

∞ +3S2
∞ +

3
4

)
+

(
S2

∞
2

+
5
4

)
exp(−S2

∞), J2 =
I2
2
− 1

4

[
(3I1 − I2)(e · eω)2 + I2 − I1

]
. (18)

Here Tr00 is the adiabatic temperature of the non-rotating sphere [8, 9]. To the best of author’s knowledge, relations
(16)–(18) for the heat flux Q at a spinning sphere in free molecular flow were not published earlier.

COMPUTATIONAL RESULTS FOR TRANSITIONAL FLOW

Computational results for transitional flow at λ∞ ∼ R are obtained in the case when the relative velocity U∞ is
perpendicular to the rotational velocity ω of the sphere (Θ = π/2), T/T∞ = 1 and ατ = 1. Then the force F and
the torque M can be also represented in the form (11) and (13), where coefficients CD, CL and Cm are functions of M∞,
Re∞ and W . Calculations were carried out for subsonic (0.1 � M∞ � 1, W = 0.1) and supersonic (1 � M∞ � 2, W = 1)
flows with the help of parallel algorithms of the direct simulation Monte Carlo method based on the NTC scheme
[7]. Sphere was placed in the center of the rectangular computational domain (Fig. 1, b) of sizes L×H ×H, where
L/R = 40, H/R = 20 for subsonic and L/R = H/R = 10 for supersonic flows. Free molecular flows over a spinning
sphere were calculated in order to verify the code. The maximal difference between numerical values of coefficients
CD, CL, Cm and CQ = St(Tr0/T∞−1) and their values computed from analytical relations (11)–(18) was less than 0.5%.

Values of aerodynamic coefficients CD, Cm and CL of the spinning sphere obtained with help of DSMC simulation
in the transitional flow regime are shown in Fig. 2 and 3. It was found that the rotation parameter W almost does not
influence the drag coefficient CD for considered ranges of Kn∞, M∞ and W (the maximal difference between CD for
the rotating and non-rotating sphere is obtained to be less than 5%). In Fig. 2, a computed values of CD (curves 2,
3 and 7) are compared with values CH

D predicted by the Henderson’s semi-empirical relations [10] (curves 8, 9 and
10). The maximal difference between CD and CH

D is observed at very low Reynolds numbers which correspond to the
free molecular flow regime. Apparently, this difference is observed because CH

D tends at Kn∞ → ∞ to the approximate
Epstein formula for the sphere drag in free molecular flow at ατ = 0.89 while CD tends to formula (12) at ατ = 1. For
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FIGURE 3. The Magnus force coefficient CL versus the Reynolds number Re∞ (a) and the critical Reynolds Re∗ and Knudsen
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transitional flow at Kn∞ � 1 the difference between CD and CH
D is less than 8% while the difference between CH

D and
the reliable experimental data by Bailey and Hyatt [11] and Zarin [12] lies in the range from 4% to 16%.

According to (14) the torque coefficient Cm in free molecular flow is inversely proportional to the rotation parameter
W . The same dependance takes place in continuum Stokes flow over a spinning sphere at U∞ = 0 and Reω � 1 where
Cm = 16/Reω , see [13]. Computational results for Cm shown in Fig. 2, b demonstrate that in transitional flows Cm is
also approximately inversely proportional to W . In particular, Cm for W = 1 (curves 5–7) is of order of magnitude less
than Cm for W = 0.1 (curves 1–4). With increasing of the Reynolds number Re∞ the torque coefficient Cm tends to a
some value which is a function of M∞ and W while in transitional flow Cm depends essentially on Re∞. For the best
of author’s knowledge, this effect of the sphere’s translational velocity on its aerodynamic torque has not been studied
yet.

Computed values of the Magnus force coefficient CL are shown in Fig. 3, a. One can see that CL tends from
the negative value −4/3 in free molecular flow to the positive value with increasing Re∞ (or decreasing Kn∞) but
the "critical" Reynolds Re∗ and Knudsen Kn∗ numbers (Fig. 3, b, "critical" value corresponds to zero value of CL,
e.g. CL(M∞,Re∗) = 0) depend significantly on M∞. The critical Knudsen number almost linearly decreases as M∞
increases, so that CL can be positive at M∞ > 1 only in the near-continuum and continuum flow regimes. The influence
of the rotation parameter W on CL is relatively weak in the considered range of W . Comparison of curves 4 and 5
corresponding to W = 0.1 and W = 1, respectively, at M∞ = 1 shows that CL slightly decreases if W increases.

It is interesting, of course, to correlate the change in CL and changes in the flow field around a sphere and the
stress distribution on its surface. However, this question is beyond the scope of the short paper. It is significant that
both normal pn and tangential pτ stresses at the sphere surface determine the Magnus force in transitional flow. Fields
of z-components of vectors pn and pτ at the sphere surface at M∞ = 2 and W = 1 in free molecular flow and for
Kn∞ = 0.05 are shown in Fig. 4 and 5, respectively. One can see that stresses at the back part of the sphere surface
(θ < 90◦) are negligibly small as compared with their values at the frontal part of the surface (θ > 90◦). The Magnus
force coefficient can be represented in the form CL =CL(n)+CL(τ) where CL(n) and CL(τ) are contributions of the normal
and tangential stresses. Fields in Fig. 4 are calculated using formulae (8) and (9). In this case the distribution of pnz is
symmetrical with respect to the plane z = 0, therefore CL(n) = 0. The field of pnz in transitional flow (Fig. 5, a) is no
longer symmetrical, CL(n) > 0 and it increases as Kn∞ decreases. The maximal absolute value of the pτz in transitional
flow (Fig. 5, b) is much less as compared with the case of free molecular flow. It means that CL(τ) in transitional flow
remains negative but its absolute value decreases as Kn∞ decreases. Therefore the combined contribution of normal
and tangential stresses changed its sign at a some critical Knudsen number Kn∗.

CONCLUSION

The Magnus force and torque coefficients for a spinning sphere were calculated for wide ranges of governing
parameters corresponding to free molecular, transitional and near-continuum flows. It was found that the Magnus
force changes its direction at a some critical Knudsen number which decreases with increase of the Mach number. The
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change in the direction of the Magnus force is caused by the redistribution of both normal and tangential stresses at
the sphere surface. The increase in the rotational velocity results in a weak decrease of the Magnus force coefficient.
The torque coefficient essentially depends on the translational velocity of the sphere. The obtained results can be used
for more accurate prediction of interaction between spinning spherical particles and a carrying gas in gas-solid flows.
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