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ABSTRACT 

This dissertation includes three essays on investments and time series econometrics. This 

work gives new insight into the behavior of implied marginal tax rates, implied volatility, and 

option pricing models.  

The first essay examines the movement of implied marginal tax rates. A body of research 

points to the existence of implied marginal tax rates that can be extracted from security or 

derivative prices. We use the LIBOR-based interest rate swap curve and the MSI-based interest 

rate swap curve to examine changes in the implied tax rate. We document multiple statistically 

and economically significant structural breaks in the long-run implied marginal tax rate that are 

not exclusively located in the financial crisis (one as recent as October, 2010). These breaks 

represent persistent divergence from long run averages and indicate that mean reversion models 

may not accurately describe the stochastic processes of implied marginal tax rates.  

In the second essay, I develop an asymmetric time series model of the VIX. I show that 

the VIX and realized volatility display significant nonlinear effects which I approximate with a 

smooth-transition autoregressive model. I find that under certain regimes the VIX depends 

almost exclusively on previous realized volatility. Under other regimes, I find that the VIX 

depends on both its lags and previous realized volatility. Since the VIX has become a popular 

hedging instrument, this finding has important implications for risk managers who elect to use 

the VIX and its related investment vehicles. It also has implications for the use of implied 

volatility in value-at-risk forecasting.  
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The third essay presents a new model for option pricing model selection. There is a 

significant performativity issue intrinsic in much of the option pricing literature. Once an option-

pricing model (OPM) gains widespread acceptance, volatilities tend to move so that the OPM fits 

well with observed prices. This often leads to systematic mispricing based purely on model 

results. A number of systematic issues such as volatility smile are present in OPMs. To remedy 

this issue, I propose a new method for ranking OPMs based on one step ahead forecasts. This 

model transforms the data to build a distribution of the stochastic term present in OPM.  This 

sample distribution is then tested for normality so that OPMs can be ranked in a Bayesian-like 

framework by their closeness to a normal distribution. 
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CHAPTER 1: INTRODUCTION 

The three essays of this dissertation empirically examine the time series nature of several 

well-known investments with emphasis on the derivatives market. The financial derivatives 

market has a notional size of around $1.2 quadrillion. Many of these markets have unique and 

complex time series features. Most of the research on derivatives pricing is done with a particular 

model in mind. My research goes in the opposite direction by using time series econometrics to 

empirically test the assumptions of several models.  

These findings are interesting because they show several short-comings in well-known 

pricing models. In the first essay, I show that many of the mean-reverting models used in the tax-

exempt swap market are not empirically justified. The second essay shows that a number of 

common methods for forecasting volatility do not match the behavior of the volatility index. The 

third essay puts forward a new methodology for selecting an option pricing model that avoids the 

performativity problem intrinsic to research in the derivatives markets.  

For several decades researchers have known about implied marginal tax rates. These tax 

rates can be extracted from security or derivative prices. Individual investors primarily drive the 

difference in prices between taxable and tax-exempt markets. Researchers have previously 

concluded that only large changes in tax laws would change the trading behavior of investors 

who switch between taxable and tax-exempt markets. The literature on pricing derivatives 

between these models indicated that these implied marginal tax rates are mean-reverting. In order 

to test this behavior, we use swaps that use a common taxable rate as the underlying and swaps 
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that use a common tax-exempt rate as the underlying. We document multiple, statistically and 

economically significant structural breaks in the implied marginal tax rate. These breaks 

represent persistent divergence from long run averages and indicate that mean reversion models 

may not accurately describe the stochastic processes of implied marginal tax rates. This finding 

has a number of implications for future research because changing investor characteristics.   

The second essay examines the data generating process of the volatility index, VIX. 

There seem to be at least two different states of the world for this index. One state is described as 

when recent volatility is close to its long-run mean. The other is when recent volatility is very 

high. I posit that the market moves smoothly between these states and test for the presence of 

smooth threshold autoregressive, STAR, behaviors. The volatility index and realized volatility 

display significant nonlinear effects which I approximate with a smooth-transition autoregressive 

model. Under certain regimes the VIX depends almost exclusively on previous realized 

volatility. Under other regimes, the VIX depends on both its lags and previous realized volatility. 

Since the VIX has become a popular hedging instrument, this finding has important implications 

for risk managers who elect to use the VIX and its related investment vehicles. The use of a 

STAR model is also radically different than industry practice.  

There is a significant performativity issue intrinsic in much of the option pricing 

literature. Option prices and models often have variables that are jointly defined. Once an option-

pricing model (OPM) gains widespread acceptance, volatilities tend to move so that the OPM fits 

well with observed prices. This often leads to systematic mispricing based purely on model 

results. A number of systematic issues such as volatility smile are present in OPMs. To remedy 

this issue I propose a new method for ranking OPMs based on one step ahead forecasts. This 

model transforms the data to build a distribution of the stochastic term present in OPM.  This 
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sample distribution is then tested for normality so that OPMs can be ranked in a Bayesian-like 

framework by their closeness to a normal distribution. Since this methodology is simple to 

deploy it is a useful first step in selecting the OPM that most appropriately matches a given 

underlying. This dissertation is organized as follows:  Chapter 2 contains the first essay on 

implied marginal tax rates, Chapter 3 contains the second essay on the relationship between 

implied and realized volatility, and Chapter 4 contains the third essay on my new option pricing 

model methodology.  
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CHAPTER 21: STRUCTURAL CHANGES IN THE TAX-EXEMPT SWAP MARKET 

 

2.1. Introduction 

The modeling of financial instruments often contains implicit assumptions about 

underlying processes, for example, the processes remain constant over time. This is not always 

the case and our empirical work in finance must have some criteria for evaluating when the 

underlying framework has changed. Many arbitrageurs are dedicated to finding new 

opportunities to exploit. The history of derivatives valuation is filled with investors who have 

developed a better model and were able to generate massive profits before revealing their 

findings.2 There is reason to believe that financial markets are not the same as they were before 

the recent financial crisis. One sign of this change is in the municipal swap market where in 

several instances the tax-exempt municipal-based interest rate index has been at times higher 

than its taxable counterparts. For example, on September 24, 2008, the Municipal Swap Index 

(MSI) weekly reset annualized rate was 7.96% (tax-exempt) while the one week London 

Interbank Offer Rate (LIBOR) rate was 3.94% annualized. MSI is comprised of tax-exempt 

instruments and on this date was more than twice as high as the taxable rate. Several sources cite 

auction failures in the market clearing mechanism on this day.   

                                                 

1 A working version of this chapter co-authored with Dr. Kent Zirlott exists and is being 

circulated.  
2 Sheen T. Kassouf and Edward O. Thorp (1967) discovered the empirical relationship for a risk-

free portfolio that has become the Black-Scholes-Merton option pricing model. They generated 

20% annualized returns over 28 years.  
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The Securities Industry and Financial Markets Association reported that the total amount 

of tax-exempt issuance for 2011 was $247.7 billion. For comparison, the total amount of 

corporate debt issuance for the same year was $1.01 trillion. The market for tax-exempt bonds3 is 

substantial and offers qualified entities the opportunity to issue debt in which some earnings are 

not taxable for individual investors. This tax shielding lowers borrowing costs for municipalities. 

Investors do not pay taxes on the coupon payments for bonds purchased in the primary market 

and held to maturity. Bonds purchased in the secondary market selling above the revised price do 

not incur taxes either if held to maturity. Given this tax structure, it seems reasonable that the 

yield-to-maturity on a tax-exempt bond would be equal to the after tax return on an otherwise 

equivalent taxable bond. The yield curves, however, do not behave this way. Historically, the 

yield curve for tax-exempt bonds has had a steeper slope than the yield curve for taxable bonds 

(e.g., Green, 1993; Longstaff, 2011). This anomaly is termed the ñmuni-puzzleò and has been 

studied for decades. During times of economic downturn the ratio between taxable and tax-

exempt rates indicates a much lower implied marginal tax rate.  These movements are 

statistically and economically significant.  

The remainder of the chapter is organized as follows. Section 2.2 discusses the relevant 

literature. In section 2.3, we discuss our models, methodology, and data. Section 2.4 reports the 

empirical findings, and sections 2.5 and 2.6 presents our discussion and conclusions.  

 

 

 

                                                 

3Debt instruments are defined in a variety of ways, such as notes, bonds, and warrants. The term 

ñbondò is used generally to include all forms of debt instruments. 
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2.2. Literature Review 

One of the first known mentions of the tax-exempt status of municipal bonds is in 1895 

when the Supreme Court ruled in Pollock v. Farmers' Loan & Trust Co. that municipal bonds 

could not be taxed by the federal government. In recent times, there have been additional rulings 

stating that the federal government could tax municipal securities if it passed legislation allowing 

such a tax. No such legislation has yet been successfully passed. For many years, researchers 

have considered the information that can be gleaned from the comparative yields between 

taxable and tax-exempt bonds. In some of the earliest work on municipal bond pricing, 

DeAngelo and Masulis (1980) show an alternative method of calculating the implied marginal 

tax rate by using the holding period return on a taxable and tax-exempt bond. In their model, 

comparing the after-tax holding period returns allows an investor or corporation to determine 

which bond is more profitable. Empirical literature has found that as the investment horizon 

increases, the implied marginal tax rate decreases. This anomaly is called the municipal yield 

puzzle.  

Since there are several stark differences between the taxable and tax-exempt markets, 

some of the literature has focused on whether or not these structural differences explain the 

municipal yield puzzle. The literature indicates that default risk and systematic risk are likely not 

the causes of the puzzle. Chalmers (1998) uses a data set composed of defeased4 bonds to see if 

differences in default risk between these markets explains the puzzle. Chalmers finds that 

defeased bonds, which have essentially no default risk, still exhibit a more upward-sloping yield 

                                                 

4Municipalities can defease bonds by creating a special purpose vehicle that purchases special 

U.S. Treasury securities that have maturities and notional amounts which exactly match the 

obligations of the issued bonds. In this way all of the money needed to pay off the bondholders is 

already set aside. 



 

7 

 

curve than their taxable counterparts. In a more recent paper, Chalmers (2006) shows that 

differences in systematic risk also do not explain the muni-puzzle, but several other differences 

between taxable and tax-exempt bonds show some promise.  

Green (1993) demonstrates how the ability to write off investment losses allows investors 

to construct artificial zero coupon portfolios. He uses this type of tax-advantaged portfolio when 

comparing taxable and tax-exempt yield curves. His model does have good explanatory power 

for why the yield curve is more upward-sloping for tax-exempt bonds. He notes that within 

taxable or tax-exempt bond markets, institutions appear to dominate pricing; however, between 

taxable and tax-exempt bond markets individuals seem to dominate pricing. Although his model 

shows significant explanatory power over certain tax regimes, currently, it would be illegal for 

an entity to try to replicate his trading strategy. Ang, Bhansali, and Xing (2010) provide 

empirical evidence that individuals demand a higher yield on discounted municipal bonds which 

are subject to taxes on the implied capital gains than a direct model of yields would indicate. 

Yield-to-maturities observed are not consistent with tax law in the cross section of municipal 

bonds which taxes some of these gains at the capital gains rate and some at the income tax rate. 

Here again they conclude that individuals are dominating pricing between taxable and tax-

exempt bonds. In looking at the option structure of municipal securities, Brooks (2002) uses 

Nelson and Siegleôs (1987) parsimonious level, slope, and curvature model of the yield curve for 

a taxable swap rate, LIBOR, and a tax-exempt swap rate. Brooks suggests that a risk premium 

must be paid by municipalities for the legislative risk that investors hold. Investors are short the 

option that the federal government holds on tax laws, which is the possibility that legislators will 

remove the tax-exemption. If municipalities lose their tax-exempt status, then they would have to 

pay a much higher interest rate and investors would see the price of their bonds fall 
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precipitously. One critique of this methodology is the lack of a credit/liquidity spread between 

taxable and tax-exempt instruments, but this can only be controlled for if numerous assumptions 

are made about the stochastic processes of the implied tax rates. Furthermore, estimates of the 

credit/liquidity spread show it to be over an order of magnitude smaller than the implied 

marginal tax rate (Longstaff, 2011).  

There has been research aimed at separating some of the confounding effects of the 

structural differences between the tax-exempt and taxable markets. There is a relatively small 

number of issuers in the corporate bond market compared to the number of issuers in the 

municipal bond market (~60,000 issuers). This means dissimilar liquidity. Additionally, 

municipal issuers may have credit risk that is not the same as the credit risk of a corporate entity; 

historical default rates show that municipal bonds tend to default less than corporate bonds with 

the same rating. Longstaff (2011) uses an affine term structure model that allows for a 

credit/liquidity spread to be incorporated into his analysis. He makes a number of assumptions 

about the stochastic processes of marginal tax rates and uses his model to solve for the 

credit/liquidity spread and the implied marginal tax rate as well as the risk premium associated 

with both of these measures. Using MSI for percentage of LIBOR basis swaps, he finds an 

average implied marginal tax rate of 38% from August 1, 2001, to October 7, 2009. Our analysis 

diverges from his in that we use a simplified model that does not use the short-term rate which is 

only available weekly. Since we have daily data, we are able to get greater power for our tests. 

Longstaff directly attributes changes in the credit/liquidity spread and the implied marginal tax 

rate to co-movements in the shortest term rates. Towards the end of 2009 there is a large amount 

of instability in his estimates of the implied marginal tax rate. This period of time is precisely 

when we find a number of structural breaks. In stark contrast to previous studies, Longstaff finds 
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a negative tax risk premium which he attributes to the highly pro-cyclical nature of marginal tax 

rates.  

A literature has also been developed on the information contained in the yield spread 

between taxable and tax-exempt yields on bonds that have the same maturity. This literature has 

revealed the influence of tax expectations on the relative pricing between taxable and tax exempt 

bonds. Greimel and Slemrod (1999) investigate whether or not the flat-tax proposed by Steve 

Forbes moved rates in the municipal swap market. They examine the spread between taxable and 

non-taxable bond yields at several different maturities. They find that the relationship at the 5-

year and 10-year maturities showed movements in the implied tax rates as Steve Forbes chances 

of becoming president increased then decreased as his chances diminished. They did not find that 

these changes had any effect on the 30-year yield spread indicating that investors did not expect 

any long term effects. Upon taking first differences, the significance of their results disappeared 

which casts doubt on the hypothesis that these movements were causal. For the time period that 

they used there was essentially just one event that could drastically change the relationship 

between the taxable and tax-exempt yields; Steve Forbesô presidential campaign and his push for 

a flat tax. We ask a similar question, ñWere there major tax-related structural change events in 

the post financial crisis?ò In their study, implied tax rates had relatively smooth changes over 

time, but other studies of interest rate movements and expectations have dealt with abrupt 

structural changes. This paper improves on previous research through the use of the time-series 

variation in the yield curves which gives greater insight into the nature of the tax risk premium.  

This is not the first paper to apply structural breaks in bond/yield curve literature. The 

Bai-Perron (2003) method for testing and identifying structural breaks is common because it 

allows for both heteroskedasticity and autocorrelation. Brooks, Cline, and Enders (2012) use  
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structural breaks in interest-rate related behavior to re-examine of several of Famaôs (1984a & 

1984b) papers on information contained in the term structure and the return premium. Brooks, et 

al. update the observations through December 2009 to see if forward rates predict spot rates. 

They find that the behavior between forward and spot rates has changed and that several 

coefficients in their main regressions are no longer behaving as previous studies have found. 

They locate multiple structural breaks and conclude that one of the core observations of Famaôs 

work no longer holds in capital markets. Fama (1984a & 1984b) showed that current rates in the 

term structure are the best indicator of future spot rates. Brooks, et al. find that several structural 

breaks have occurred; and currently, forward rates are the best indicator of spot rates. Using this 

type of analysis we show several large, persistent structural breaks the implied marginal tax rate.   

 

2.3. Methodology 

2.3.1 Models 

There has been a large amount of previous research that considers the relationship 

between taxes and investment valuation. The tax-exempt securities market presents a means for 

calculating the specific value of being classified as tax-exempt. The yield to maturity on a bond 

can be a useful tool for evaluating investment possibilities. To lay the groundwork for our 

analysis we follow a section of DeAngelo and Masulis (1980). Consider two bonds that have the 

same par value and maturity and that pay no coupon payments. Assume that one is tax-exempt 

and the other is fully taxable and both bonds have no chance of default. In this world, the only 

thing an investor must consider is his after-tax returns on the investment. For an investor who 

pays no taxes, the bond that gives the higher return would be the better investment. If there was 

an investor who has a marginal tax rate of 100% of his additional income, then he should invest 
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in the tax-exempt bond. For an investor at the margin who is indifferent between a taxable and 

tax-free security his after-tax returns will consist of the following relationship: 

ὶ ȟ ρ †ὶȟ 

where rTE,t is the tax-exempt interest rate at time t; rT,t is the taxable interest rate at time t; and Ű 

is a measure of the marginal tax rate. It is important to note that the above equation includes a 

number of simplifying assumptions about relative interest rates. We have assumed no liquidity 

difference between the securities, no credit default differences between the securities, and no 

difference in the coupon payment structure. Longstaff (2011) assumes that the spot (weekly) rate 

on the MSI index can be represented as follows:   

ὓ ὶρ † ‗ 

where  Mt is the tax-exempt 1-week MSI rate; r t is the risk-free interest rate; Űt is the marginal tax 

rate of the marginal investor in VRDOs; and ɚt is a credit/liquidity spread over the risk-free rate. 

This model is consistent with the findings of Liu, Longstaff, and Mandell (2006) who find that 

an r tɚt term is statistically insignificant. Additionally, Longstaff (2011) assumes that the spot 

(weekly) LIBOR rate can be written as follows: 

ὒ ὶ ‘ 

where  Lt is the taxable LIBOR rate;  r t is the risk-free interest rate; and µt is a credit/liquidity 

spread over the risk-free rate.  

The tax-exempt yield curve does not exist in an aggregated form. When looking for a 

risk-free taxable rate, one option is Treasuries which exist for numerous maturities. Nevertheless, 

in the tax-exempt market, a single source of yields for numerous maturities does not exist (i.e. 

which municipal bonds should be used to construct the yield curve?). We use data from the 

market for MSI-based swaps, and we follow a similar approach to Longstaff (2011) by using 
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swaps where the percentage of floating LIBOR rate is exchanged for the floating MSI rate. Using 

fixed-for-floating interest rate swaps based on LIBOR and MSI, we synthetically create the 

LIBOR percentage basis swaps. Following the method outlined in Longstaff (2011), we create a 

synthetic basis swap by using the percentage of a fixed leg of a LIBOR-based interest rate swap 

required to pay the fixed leg amount of the fixed leg of a MSI-based interest rate swap. We end 

up with a percentage-of-LIBOR for MSI swap. These interest rate basis swaps are generally 

priced in the swap market based on the percentage of LIBOR paid/received. These swaps serve 

as a direct proxy for one minus the marginal tax rate. 

There are many reasons to assume that swaps offer a better measure of rates than bond 

yields--particularly in the tax-exempt market. Since interest rate swaps are based on short-term 

rates, the fixed leg of a swap tends to reflect the expected accumulation of realized short-term 

rates. This avoids preferred habitat problems which may be embedded in the yield curve. This 

also keeps embedded optionality from entering into pricing. Even if tax-exempt bonds are not 

putable or callable, the issuer still holds the option of defeasance. Even for issuers of the highest 

quality, defeased bonds have an altered set of risk characteristics. Swaps avoid this complication. 

The swaps used here are widely traded in a standardized form so liquidity is not a problem.  

We do not estimate the values of the credit/liquidity spreads shown above. Longstaff 

(2011) finds the average credit/liquidity spread over the risk-free rate for the short-term MSI rate 

of 0.00565 with a standard deviation of 0.00621. This is two orders of magnitude smaller than 

numerous estimates of the implied tax rate. Structurally, there is far less default risk in swaps as 

opposed to bonds. Bonds have a principal amount that is exchanged at maturity, but interest rate 

swaps typically do not exchange the notional amount. The zero-sum game structure of interest 

rate swaps makes them ideal for effective symmetric hedging. If these swaps are used for 
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hedging, then losses on the swaps should be offset by gains elsewhere on the entityôs balance 

sheet. Interest rate swaps also tend to be over-collateralized further decreasing default risk. 

Unlike municipal bonds which tend to be illiquid, swaps and the indices on which they are based 

are widely traded in a standardized form reducing the liquidity portion of the spread.  

We are primarily interested in the behavior of the proportion of tax-exempt to taxable 

interest rate swaps as these give a proxy for the relative profitability of investing in taxable 

versus tax-exempt markets (from here on we refer to this variable as the taxproxy). 

Ƞȟ

Ƞȟ
ὸὥὼὴὶέὼώȟ ρ †  

where  sTE,t,T is the swap fixed rate for a tax-exempt T-year swap at time t (MSI); sT,t,T is the swap 

fixed rate for a taxable T-year swap at time t (LIBOR); taxproxyt,T is our primary variable of 

interest which is derived as shown above; and Ű is a measure of the marginal tax rate. 

The method we use to test for the existence of structural breaks in this data is based on 

Bai and Perron (2003). We use a minimum distance of 2 months between breaks. Comparing the 

number of structural breaks is done through Bayesian (BIC) or modified Schwarz (LWZ) 

information criteria for each number of breaks. Additionally, for each number of structural 

breaks the algorithm generates F-statistics that can be compared to Bai and Perronôs asymptotic 

critical values to determine model significance. Because we are testing for structural breaks, we 

are limited in the types of models available.  

We first test each of our variables for the presence of a unit root using the Augmented 

Dickey-Fuller Test (1979) beginning with 20 lagged differences (almost an entire month). Since 

there is no consensus on the data generating process for our taxproxy, we use the procedure for 

determining the existence of constant and time-trend variables given by Dolado, Jenkinson, and 

Sosvilla-Rivero (1990). In addition to this test, we also run Lee and Straczicichôs (2003) LM test 
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for unit root with two structural breaks. Once the order of the process is known, we can establish 

the time series characteristics necessary to test for structural breaks. Since the Bai-Perron method 

requires the use of only autoregressive (AR) terms, we select the best AR(p) model for each 

tenor of the taxproxy.  

The Bai-Perron method is computationally demanding for the number of possible breaks 

in our data. Based on a recommendation from Bai and Perronôs paper, we limit the number of 

structural breaks to five.  Since the above set of tests relies on having non-constant means, it is 

reasonable that the series may also have non-constant variance. If GARCH effects are present, 

then they will reduce the power of structural break tests. However, all structural break tests had 

p-values smaller than 1%. The tests for GARCH effects are included in the appendix.  

Our dataset contains I(1) variables which can be combined in a way to form an I(0) 

variable indicating the presence of cointegration. The presence of cointegration shows that rates 

are related and driven to long run levels. To make the time series of swap rates compatible with 

cointegration, a log transformation must be used. Recall that our model of the taxproxy is as 

follows:   

)1(,

,;

,;
t-º= Tt

TtT

TtTE
taxproxy

s

s
 

We know that equilibrium swap rates individually are I(1) series, whereby they do not 

have a mean and they are not covariance stationary over time. The time series of the taxproxy is 

I(0) under the unit root test so we know that the above relationship between I(1) variables yields 

a stationary series. Cointegration requires that some linear combination of less stationary series 

yields a more stationary series. Taking the natural log of the above equation gives the vector: 

TtTtTTtTE taxproxyss ,,;,; lnlnln =-  
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Implied tax rates are cyclical, so as rates decrease the implied marginal tax rates tend to 

decrease. In order to allow our regression to incorporate these effects, we relax the above 

restrictions on the swap rates and constraining the taxproxy to be a constant:  

0lnln 0,;2,;1 =++ ggg TtTTtTE ss  

In the above equation ɔi is the estimated coefficient. By using the above equation as the error 

correction function, we can test for the level effects or arbitrage relationship between the 

different swap rates. We follow the Engle-Granger methodology (1987) for identification and 

testing. We test the natural logarithm of the fixed-leg swap rates for a unit root and confirm that 

they are I(1). We solved for the coefficients in the above equation in order to determine the long 

run relationship between the MSI-based swap rate and the LIBOR-based swap rate. Next, we test 

for residual auto-correlation to confirm this long term relationship. We estimate a VAR type 

model as shown below:  
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In the above equations Ŭii is the estimated coefficient in the VAR EC model. Once the above 

models are estimated the level of error correction can be calculated and checked for statistical 

significance. Here again the presence of structural breaks will bias our results downward causing 

the estimated level of mean reversion towards the error-correction vector to be attenuated.  
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2.3.2. Data 

We obtain daily forward filled swap market data for the typically traded maturities (1, 2, 

3, 4, 5, 7, 10, 15, 20, and 30-year maturities) of LIBOR (London Interbank Offer Rate) and MSI 

(Securities Industry and Financial Markets Associationôs Municipal Swaps Index). Weekend 

observations are omitted for all of our work. A plain vanilla LIBOR swap is typically settled 

semi-annually with the fixed leg being paid on a 30/360 day count convention so that each of the 

payments is identical. The floating leg of the swap is paid based semiannually on an actual/360 

day count convention.5 The rate used for the settlement of municipal swaps is the Municipal 

Swap Index (MSI). This rate is developed by Municipal Market Data which is a subsidiary of 

Thomson Financial Services. The MSI rate is based on high grade, 7-day-resettable, tax-exempt 

variable rate demand obligations (VRDOs). The value of this index is determined by a market 

clearing mechanism through a remarketing agent.  To be included in this index, a VRDO must be 

larger than $10 million. Its issuer must also have the highest short-term issuer credit rating 

(VMIG1 by Moodyôs or A-1+ by Standard and Poorôs). The VRDO must, also, be settled on 

Wednesday. The primary owners of these securities are money market funds which are, in turn, 

held by individuals (70% based on estimates by Criscuolo and Faloon, 2007). MSI is used as the 

floating rate in the fixed-for-floating interest rate swaps representing tax-exempt rates. An 

important note on these municipal swaps is that cash flows from these swaps are fully taxable but 

the underlying rates are not.  

 

 

                                                 

5Although recently there have been accusations of fraud in the setting of LIBOR, these swaps are 

still widely traded; and a replacement for the basis swaps has not appeared. 
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2.4. Empirical Results  

2.4.1 Descriptive Statistics 

The primary variables of interest for our study are the daily observations of the swap 

curves for the commonly observed swap market quotations. It is important to note that our 

taxproxy displays far more stationarity than either of the fixed-for-floating rates from which it is 

derived. This can be seen in the serial correlations which are slightly lower for our proxy and the 

variance, which is much smaller shown in Table 2.1. Our proxy follows the basis swaps in 

Longstaff (2011). In results not shown, we compare descriptive statistics for the same time 

period as Longstaffôs paper. They are almost exactly the same, but since he uses observed basis 

swap rates some slight discrepancy is expected. For the time period used in our tests we observe 

higher serial correlation and standard deviation. Both of which can be explained by structural 

breaks that make an otherwise stationary series appear to be less stationary.  

In order to look more specifically at the structural breaks not due to changing tax laws, 

we use only prices after January 1, 2003 because previous years saw changes in the highest 

marginal tax rate. Our data set covers more than seven years where the highest marginal tax rates 

did not change, allowing for a test of structural breaks in the absence of tax law changes.  

2.4.2. Unit Root Testing 

The unit root testing was first done with the swap rates. We followed a general-to-

specific methodology by first identifying the appropriate number of differenced lag lengths as 

follows: 

t

n

i ititt yyy ebg +D+=D ä= -- 11
 

Here ɔ is the key test statistic for our unit root test, the ɓiôs are the coefficients on the lagged first 

differences, and yt is our variable of interest. We did not use a constant or a time term in these 
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regressions. The swap rates theoretically should not have any deterministic drift over time. 

Starting with 20 lagged values, we narrowed our regressions down using t-tests until the longest 

lag was significant at the 5% level. We then used the Dickey-Fuller critical values to evaluate the 

existence of a unit root. In Table 2.2, we estimate the above regression for the optimum number 

of coefficients and record the coefficients and their t-statistics. 

We estimate these regressions over the entire sample period and identify the MSI series, 

the ln(MSI) series, the LIBOR series, and the ln(LIBOR) series as containing a unit root because 

we fail to reject the null hypothesis that the lag coefficient is zero. When using the first 

difference of each series, we strongly reject the null hypothesis that the differenced series contain 

a unit root. Together these results indicate that the MSI series, the ln(MSI) series, the LIBOR 

series, and the ln(LIBOR) series are each I(1) series. We move next to the unit root testing of the 

taxproxy.  

There are several issues with testing the taxproxy for the presence of a unit root. Since the 

presence of structural breaks can cause a stationary series to fail to reject the null hypothesis of a 

unit root, the rejection of a unit root is a stronger test than required for the use of the Bai-Perron 

procedure. Since there is no consensus in the literature on the characteristics of our data 

generating function, taxproxy, we use the Dolado, et al. (1990) procedure that assumes that the 

data generating process is completely unknown. This method begins by estimating the following 

equation:   

t

n
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Here a0 is the constant term, and a2 is the drift coefficient. The optimum number of lags is found 

in the same way as described above. In results not shown, we eliminate the presence of a 

constant and time trend term. From 2003 to the end of our sample period, this tests also fails to 
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reject initially, then rejects at first differences, indicating that each tenor of the taxproxy is an I(1) 

process. However, we later find that there are multiple significant structural breaks in this 

variable. To incorporate the presence of structural breaks, we run the Lee-Strazicichôs (2003) 

minimum LM unit root test with two structural breaks. The presence of structural breaks can 

cause the Dickey-Fuller test to fail to reject, but ña rejection of the null unambiguously implies 

trend stationarityò under Lee and Strazicichôs test. The results for a change in just the level are 

shown in Table 2.3.  

In a number of tenors, our results show that the series are stationary with structural 

breaks. Additionally, each model selects the maximum two structural breaks allowed under this 

model. Since more structural breaks are present, it is likely that the failure to reject in the longer 

tenors is due to the need to include the additional breaks. To be thorough, we also test using a 

model that allows for breaks in both the level and slope terms.  

Later tests with the Bai-Perron methodology show that we have structural breaks in both 

the level and AR terms, so we also run Lee and Strazicichôs Test with this specification. When 

structural breaks are present, the Lee and Strazicich Testôs critical values are dependent on the 

location of the breaks. The locations are given by the fraction of the time seriesô data points that 

have occurred before the break date for each break. Since all of our break locations with two 

breaks are above 0.4 for the first break and 0.6 for the second break, we use the critical values, 

from Table 2 in Lee and Strazicichôs paper, for the following break locations to create a plane:  

(0.4, 0.6), (0.4, 0.8), and (0.6, 0.8). The plane that we create is in three dimensions, with the 

locations of the first and second breaks being two dimensions, and the 1 or 10% critical values 

being the third dimension. By doing this, we can linearly interpolate all of the necessary critical 

values for our tests. The results from this test along with critical values are shown in Table 2.4.  
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Table 2.4 shows that over a number of shorter tenors, we reject the null hypothesis in 

favor of a stationary series with structural breaks. Based on the reported critical values, we 

cannot reject for the longer tenors, but two issues arise:  the low n for our critical values and the 

known presence of additional structural breaks. The critical values given in Lee and Strazicichôs 

paper are for 100 observations, making them further from zero than if the critical values were for 

the 2000 observations used in our analysis. Generating these new critical values is 

computationally untenable because the LS test is quite computationally demanding.6 In our later 

analysis, we find between 3 and 5 structural breaks in our series. The setup for the LS test does 

allow for more than two structural breaks but the computational time required grows 

exponentially with each additional break making this too unviable. The addition of these effects 

will increase the likelihood that we select a model that is stationary with structural breaks 

moving us toward our conclusion. We next move to see if the MSI-based fixed-leg rates and the 

LIBOR-based fixed-leg rates move together.  

2.4.3. Cointegration Model 

One can argue that the co-movement of these rates is simply an artifact of each rate 

having a similar tenor and that these rates are not in fact related. As a robustness test, we run a 

cointegration model to see if these rates actually do move together in a statistically significant 

way as previous theory indicates. The existence of a semi-arbitrage type relationship is ideal for 

a cointegration model. A cointegration model is useful for considering two processes that are 

each themselves unit root processes but have some relationship to each other (like never moving 

too far apart from each other). Cointegration depends on a linear combination of variables. To 

                                                 

6We calculated that it would take 4.59 years to generate a single critical value for 2000 

observations with one of our office computers.  
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create an additive relationship, we use the natural logarithms of our implied tax rate equation. In 

following the Engle-Granger (1987) methodology, we have already tested each of our series for 

their order of integration and found ln(MSI) and ln(LIBOR) to be I(1) processes. A linear 

combination of these variables given by the taxproxy is shown to be an I(0) process; the presence 

of structural breaks are not accounted for, which reduces the power of this test.  

ÌÎίȠȟ  ÌÎί Ƞȟ Ὡ 

The next step is to estimate the long-run equilibrium relationship between the ln(MSI) 

and the ln(LIBOR). Using these residuals, the following regression is run to determine 

significance of cointegration:  

ЎὩǶ ὥὩǶ ‐ 

Based on this equation, if we reject the null hypothesis a1=0 then the series is 

cointegrated. Estimating over the entire sample period we get the results shown in Table 2.5. The 

results show that we can strongly reject the null hypothesis that the errors are uncorrelated. These 

findings are similar across tenors. The linear regression is then used as an error correction 

function to model the fact that the series seem to be drawn back together when they are outside 

of this equilibrium relationship. If the implied tax rate is constant over time, then any movement 

in LIBOR should be mirrored by a proportionally constant movement in the MSI rate and vice 

versa. Arbitrage done by investor switching should cause these rates to follow each other over 

time. The coefficients on the natural log of the tax-exempt rate are not equal to 1, but 

demonstrate that in each tenor there is some curvature in the cointegration line outside of log 

space. This is attributed to the fact that the tax-exempt rate collapses closer to the taxable rate 

during the financial crisis. We next look at whether the MSI-based or LIBOR-based swap rates 

move significantly towards the cointegration vector.  
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We add error-correction behavior to a VAR model in order to see if divergence from 

long-run behavior causes the series to move back together. Alternatively, we ask the question:  is 

the error correction vector significant in regressions with the taxable rate on the LHS, regressions 

with the tax-exempt rate on the LHS, both regressions? Using the error correction vectors for 

each tenor, we compute a VAR style model with lags of the natural logarithm of the first 

difference of the MSI-based and LIBOR-based series. Lag lengths are found using the BIC.    

In Table 2.6, we find that at the shortest tenors, the error correction vector coefficient is 

significant only in the LIBOR equation. As we move past a four year tenor, the error correction 

vector coefficient becomes significant, but only in the MSI equation. It seems that for short 

tenors the LIBOR swap rates error correct towards the MSI swap rates, and for long tenors the 

MSI moves towards the LIBOR. This error correction is of similar magnitude in both variables. 

At higher magnitudes the error correction terms for the LIBOR are negative, which shows these 

variables moving away from each other. However, these terms are also not statistically 

significant so we cannot say that they are not zero. Even with significant structural breaks across 

all tenors, the normal pattern for these markets is for them to error correct (significantly in one 

market or the other except for the four year tenor). An examination of the t-statistics indicates 

that in every case except for the thirty year tenor, these time series Granger-Cause each other. In 

the thirty year tenor, the LIBOR Granger-Causes MSI but not vice versa. Here again we see 

significant evidence that these rates are highly related. Each of these ECM implies an impulse 

response function which we show in Figure 2.2.  

The impulse responses show that these equations contain a small but long-run level of 

persistence. This is also consistent with our knowledge of interest rates. Interest rates and related 

instruments tend to display unit-root behavior in the short-term and mean-reversion over long 
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periods of time (Cochrane, 1991). Having shown that these rates are significantly cointegrated 

even in the presence of structural breaks, we move to structural break testing.  

2.4.4. Structural Break Testing 

The nature of our data necessitates the use of a time series model for our analysis. In 

order to test for the existence of structural breaks, we first needed to find the optimal lag length. 

We use Box-Jenkins methodology to calculate the optimum lag length for each tenor of our 

taxproxy. We find optimum lag lengths of 1 for each tenor and define the time series of our 

taxproxy as an AR(1) process for structural break tests. Our model can be written as shown 

below:   

ὸὥὼὴὶέὼώ ὸ  ὸὸὥὼὴὶέὼώ‐ 

Here ɓ0(t) and ɓ1(t) jointly and abruptly change several times over our testing window. Now that 

the models of these series have been selected, we move into the analysis of structural breaks.  

We begin our analysis by running the Bai-Perron algorithm for the dataset. To see if 

significant structural breaks occurred in the years when there were no changes in implied 

marginal tax rates, we limit testing for structural breaks to after the year 2003, which is a single 

tax regime. These tests select the structural breaks shown in Table 2.7. The table indicates that 

for most tenors there are at least five structural breaks in the taxproxy. In each case F-tests 

indicate that for the selected number of breaks, the results are significant at a greater than 1% 

level. To further examine the size and magnitude of these structural breaks, we compute 95% 

confidence intervals for the location in time of each break. These results are shown in Table 2.8. 

The results show that most of the breaks are in the financial crisis. Not only do these numbers 

indicate that there are significant changes in the implied marginal tax rate, they also show that 

the level of mean reversion is quite different for long periods of time during the financial crisis. 



 

24 

 

This evidence casts doubt on models that assume a single stable implied marginal tax rate for a 

given tax regime and on models that assume a mean reverting implied marginal tax rate. To 

quantify the economic significance of these structural breaks, we take the fixed leg values at each 

side of the 95% confidence intervals shown in Table 2.9.  

These structural breaks are statistically and economically significant given the large 

notional value for this instrument. The statistical significance of these breaks has been 

established through the use of Bai-Perron critical values so even though some of the taxproxy 

changes are small, they are still significant at the 1% level. Looking at the 1-year tenor, we find 

that multiple significant structural breaks have occurred within a single tax regime. This is 

consistent with tax effects previously documented in the literature (i.e. the Steve Forbes effect on 

implied tax rates). In contrast to Greimel and Slemrod (1999), who found no significant effects 

on the long run implied tax rates, we find that the 30-year tenor shows statistically and 

economically significant changes. These changes are in the absence of tax regime changes, and 

they are quite large. In November 2008, the implied marginal tax rate dropped 15.3% and in 

April 2009 the implied marginal tax rate rose 10.8%. We now outline several factors that may 

have led to these structural breaks.  

 

2.5. Discussion 

The structural breaks happened for different reasons than those outlined in the previous 

literature. These years did not see changing tax regimes. Outlined below are several explanations 

for the changes found in this paper.  

The flow of funds during the recent financial crisis is one possible explanation for the 

significant structural breaks in the implied marginal tax rate. Since MSI is used for investment 
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purposes for individuals, those moving their funds out of tax-exempt investments would 

influence prices. We expect to see funds move from tax-exempt to taxable as individuals change 

their investment behavior due to lower expected tax liabilities. Suppose that a large number of 

investors realize near the end of 2008 (or when they are filling their taxes) that their large losses 

will materially affect their marginal tax rate. This change in individual marginal tax rates could 

cause them to change their investment behavior to maximize their after tax returns, and could 

account for the additional shifts observed in 2009 and 2010. In order to see if fund flows line up 

with the structural breaks, a number of different transformations were tested. None of these 

transformations, first differences, or proportional measures yielded any pattern consistent with 

the structural breaks in the implied marginal tax rates which are shown in Figures 2.3 and 2.4.  

Another potential argument for the observed structural breaks is changing credit 

conditions. The frequency of many of these deviations indicates that this is unlikely to be the 

case. Additionally, the underlying municipal swap rate is based on seven day resettable 

securities. The short duration of these securities means that they can respond quickly to changing 

credit conditions, but the fact that the index includes only issuers with the highest rating 

available for short-term issuers casts doubt on this explanation. Appleson, et al. (2012) show in 

Table 2.10 that although there have been a large number of defaults in the municipal bond 

market, there are very few among rated issuers. Table 2.10 shows that there have been less than 

118 municipal defaults from issues rated by S&P and Moodyôs between 1970 and 2011. In a 

larger sample of rated and unrated municipal issuers, there exists some clustering during the 

recent financial crisis. During the recent financial crisis, a number of bond insuring agencies lost 

their high credit ratings and some municipal issuers lost their credit guaranties. By definition, the 

MSI adjusts for these effects by only including VRDOs with issuers that have the highest 
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possible short-term credit rating. The drop in available highly-rated issuers could explain some 

of the variation, but we would expect movement in a single direction. The rare nature of rated 

municipal default implies that a changing credit environment is unlikely to explain the observed 

structural breaks.   

There is also an argument that these results are driven by the supply of tax-exempt bonds. 

In order to look at the supply effects, we pull IRS records for the number and mount of tax-

exempt governmental bonds each year which is shown in Table 2.11. Tax-exempt private 

activity bonds are still subject to the AMT so they are not included in this number. The amount 

of issuances is highest in 2003 and 2009. The IMTRs observed in 2003 are for many tenors some 

of the highest IMTRs. The IMTRs observed in 2009 are some of the lowest observed in our 

analysis. Hence, a supply side story does not fit our observed structural breaks. This additional 

evidence is again consistent with changing investor tax situations through the financial crisis.  

A recent paper by Mitchell and Pulvino (2012) shed light on fire sales done by 

rehypothecation lenders during the recent financial crisis. They use a number of proprietary data 

sources to illustrate the collapse of several different types of quasi-arbitrage trading strategies 

often used by hedge funds. In the weeks following the Lehman Brothersô bankruptcy, the market 

for short term financing almost completely disappeared and at the same time lenders attempted to 

liquidate their collateral holdings. This caused a number of quasi-arbitrage trades to diverge from 

their long-run levels for months until new capital arrived to trade on almost certainly profitable 

trading opportunities. In the same vein, there is an expected long-run mean for the implied 

marginal tax rate. Figure 1 shows that in 2006 and most of 2007 the taxproxy is almost flat. In 

2008 the taxproxy fluctuates wildly at around the same time the short term financing market 
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dried up. The limited leverage available to exploit arbitrage opportunities is one likely 

explanation for the persistence observed structural breaks.  

 

2.6. Conclusion 

We document several structural breaks that have occurred in the implied marginal tax 

rate as observed from MSI-based and LIBOR-based swap markets. These structural breaks are 

statistically significant under Bai and Perronôs methodology and are also economically 

significant. We trace major changes to both the taxable and tax-exempt markets. An important 

consideration going forward is that these breaks tend to occur during times of economic 

downturn.  

This information could be used as a macroeconomic hedge. If these rates diverge away 

from their long-run means in a predictable way, an entity that depends on taxes could enter into a 

basis swap that increases in value during times of lower tax revenues and correspondingly lower 

implied tax rates. Additionally, our results cast doubt on the use of numerous short-rate models. 

Structural changes have been predicted in the previous literature between different tax regimes, 

but we have shown that in the absence of tax regimes, structural breaks in the implied tax rate 

have still occurred. This challenges the effectiveness of short-rate models in applications over 

long periods of time. Our findings also indicate that future studies of asset pricing between 

taxable and tax-exempt asset pricing must have some way of controlling for clientele changes 

because the economic climate can significantly change the distribution of tax filers based on 

where they are in different tax brackets.  
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2.A. APPENDIX 

2.A.1. GARCH Effects  

There exist several ways to pretest for generalized autoregressive conditional 

heteroskedasticity. The presence of non-constant variance is fairly common in financial variables 

which generally behave as GARCH(1,1) processes. We take each of the variables and 

individually test for these types of nonlinear effects. Then the best GARCH process for each 

series is found by using as a starting point the best ARIMA process and then adding different 

GARCH characteristics. Since their means move together, it is plausible that the variance of the 

tax-exempt rate moves with the variance of the taxable rate. A multivariate GARCH model of 

the lagged differenced tax-exempt series and the lagged differenced taxable series are used. We 

show here some multivariate GARCH models of the 1-year maturity. If the differences move 

together and the variances move together, then it is possible that the series are cointegrated. If 

GARCH effects are present, then they will reduce the power of structural break testing. 

However, since our tests for structural breaks resulted in highly statistically significant results, 

we ignore these effects in the body of our paper.  

The variables used to create the cointegration vector were also found to have GARCH 

effects. Testing for different types of univariate GARCH effects indicated an IGARCH(1,1) 

model for ȹln(LIBOR) and ȹln(MSI). Model selection was done using AIC and BIC. One 

problem with the these observed effects is that under the arbitrage relationship described earlier, 

there will be a group of investors who will have an incentive to switch their investments back 

and forth depending on their expected marginal tax rate. The univariate GARCH models shown 

below do not capture any type of volatility spillover, but multivariate GARCH models did show 
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significant spillover effects. Because we are primarily focused on the data generating process of 

the means, we do not show the variance effects.    

To give a description of the variance of the series in this study, we begin by pretesting 

our series for nonlinear effects by using the McLeod-Li test (1983). Each of the tenors of the 

taxproxy variables shows significant autocorrelation in the squared residuals indicating GARCH 

effects. The presence of these effects reduces the power of structural break tests. Much of the 

GARCH effects are concentrated in the fourth lag likely because the underlying rate on the 

municipal swap, MSI, is settled weekly. These results are shown in Table 2.A.1. Since structural 

break tests were highly statistically significant in the presence of GARCH effects, there is no 

reason to try to control for them in our main results.  

2.A.2. Structural Breaks Related to Tax Regime Changes 

We have put forward that our work is the first to find structural breaks within a single tax 

regime. This presupposes that a tax regime change will involve a structural break in implied tax 

rates. In order to test this idea, we use several other datasets. The data set used for this paper goes 

back to April 20, 2001. The ñBush Tax Cutsò7 caused the highest marginal tax rate to decline 

over 3 years:  39.6% in 2000, 39.1% in 2001, 38.6% in 2002, and 35.0% in 2003. The first law in 

this set had tax rates declining over a 5 year period, but the second law signed in 2003 had these 

tax cuts completed in 2003. The turn of the century saw the collapse of the dot-com bubble, 

which is a contravening effect present in this time period. Figure 2.A.1 gives an overview of our 

taxproxyôs movements over these years. An upward movement on this graph is the same as a 

lower implied marginal tax rate. Correspondingly, the shorter-term implied tax rate is lower in 

                                                 

7 The Economic Growth and Tax Relief Reconciliation Act signed in May 2001, and Jobs and 

Growth Tax Relief Reconciliation Act signed in May 2003.  
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2003 than in the previous years. The results in Table 2.A.2 show structural breaks that are 

significant at the 1% level except for the 5-year tenor which is significant at the 2.5% level. The 

structural breaks and their corresponding AR(1) models are shown in Table 2.A.3.  

The results show a number of significant changes in the model terms as well as long-run 

means. The general trend is that our taxproxyôs long-run mean is higher in the later portion of the 

time window. The chaos relating to the end of the dot-com bubble and the resultant losses in the 

stock market would move many investors to a lower tax bracket. This change in investment 

behavior could lead to a declining implied marginal tax rate (which in our framework would be 

an increasing taxproxy). The other viewpoint is that investors, realizing that they would be 

paying a lower marginal tax rate, required a higher return on their tax-exempt investments. The 

results show evidence of both effects. Several spikes in the taxproxy are consistent with market 

wide losses, and the overall upward trend is consistent with the predicted effects of a tax cut.  
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Table 2.1: Summary Statistics 

Our dataset spanned from January 1, 2003 to March 4, 2011; and can be obtained through 

Bloomberg. Note that there are slightly few observations for the SIFMA 30-year swap, but the 

earlier observations are kept for our analysis throughout the paper.  
 

Panel A:  Municipal Swap Index (MSI) Based Swap Data 

 

Index   Mean (%) 
Standard  

Error 
Minimum Median Maximum 

Serial  

Correlation 
Observations 

1-year SIFMA Swap 1.977 1.155 0.326 1.876 3.839 0.999 2133 

2-year SIFMA Swap 2.204 0.999 0.420 2.198 3.872 0.999 2133 

3-year SIFMA Swap 2.442 0.862 0.582 2.459 3.926 0.998 2133 

4-year SIFMA Swap 2.654 0.753 0.813 2.714 3.978 0.997 2133 

5-year SIFMA Swap 2.838 0.663 1.098 2.912 4.011 0.997 2133 

7-year SIFMA Swap 3.114 0.544 1.640 3.222 4.095 0.993 2133 

10-year SIFMA Swap 3.391 0.456 2.109 3.512 4.222 0.994 2133 

15-year SIFMA Swap 3.685 0.398 2.453 3.787 4.417 0.992 2133 

20-year SIFMA Swap 3.829 0.395 2.504 3.913 4.600 0.992 2133 

30-year SIFMA Swap 3.944 0.380 2.528 4.007 4.702 0.991 2133 
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Panel B:  London Interbank Offer Rate (LIBOR) Based Swap Data 

 

Index   Mean (%) 
Standard  

Error 
Minimum Median Maximum 

 Serial  

Correlation 
Observations 

1-year LIBOR Swap 2.713 1.798 0.361 2.428 5.757 1.000 2133 

2-year LIBOR Swap 2.991 1.569 0.474 2.865 5.741 0.999 2133 

3-year LIBOR Swap 3.291 1.372 0.676 3.246 5.745 0.999 2133 

4-year LIBOR Swap 3.552 1.216 0.971 3.565 5.755 0.998 2133 

5-year LIBOR Swap 3.769 1.092 1.313 3.835 5.773 0.998 2133 

7-year LIBOR Swap 4.093 0.925 1.940 4.211 5.837 0.997 2133 

10-year LIBOR Swap 4.397 0.803 2.328 4.549 5.932 0.996 2133 

15-year LIBOR Swap 4.685 0.728 2.476 4.884 6.031 0.996 2133 

20-year LIBOR Swap 4.802 0.723 2.445 5.022 6.083 0.996 2133 

30-year LIBOR Swap 4.860 0.714 2.363 5.079 6.108 0.996 2133 
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Panel C:  Time Series of MSI-LIBOR Basis Swap 

Index Mean 
Standard 

 Error 
Minimum Median Maximum 

Serial  

Correlation 
Observations 

1-year Swap  78.56% 0.100 65.17% 75.54% 106.37% 0.987 2133 

2-year Swap  77.10% 0.074 66.23% 75.94% 99.38% 0.989 2133 

3-year Swap  76.56% 0.066 67.02% 75.34% 99.06% 0.988 2133 

4-year Swap  76.52% 0.061 67.08% 75.40% 100.93% 0.987 2133 

5-year Swap  76.77% 0.059 67.67% 75.82% 97.23% 0.989 2133 

7-year Swap  77.17% 0.057 53.39% 76.51% 98.05% 0.977 2133 

10-year Swap  77.98% 0.056 69.29% 77.32% 101.53% 0.989 2133 

15-year Swap  79.44% 0.058 70.49% 78.57% 107.47% 0.991 2133 

20-year Swap  80.52% 0.060 71.45% 79.46% 104.69% 0.994 2133 

30-year Swap  82.01% 0.065 72.55% 80.57% 108.95% 0.993 2133 
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Table 2.2: Unit root testing 

Shown below are the results of unit root testing (from January 1, 2003 to March 4, 2011) for the 

observed fixed leg swap rates using the Dickey-Fuller methodology. The maximum number of 

lags included is 20.  

 

Panel A: Tenors 1 through 10 

 

1-Year MSI ȹ MSI ln MSI ȹlnMSI LIBOR ȹ LIB ln LIB ȹ lnLIB 

Lag -0.000201 -0.92081 -0.00024 -1.01234 -0.00015 -0.757305 -0.00024 -0.83329 

t-stat -0.58539 -11.2852 -0.33242 -9.55141 -0.50734 -12.16124 -0.4539 -8.96136 

No. of Lags 16 15 17 20 10 9 17 20 

2-Year MSI ȹ MSI ln MSI ȹlnMSI LIBOR ȹ LIB ln LIB ȹ lnLIB 

Lag -0.000261 -1.17558 -0.00054 -1.12828 -0.00022 -1.020027 -0.0004 -1.00934 

t-stat -0.62573 -17.8611 -0.73302 -9.74196 -0.55737 -13.70653 -0.70009 -9.3984 

No. of Lags 8 7 16 20 10 9 16 20 

3-Year MSI ȹ MSI ln MSI ȹlnMSI LIBOR ȹ LIB ln LIB ȹ lnLIB 

Lag -0.000266 -1.21613 -0.00049 -1.07922 -0.00024 -1.033228 -0.00036 -0.93187 

t-stat -0.62434 -18.0728 -0.78889 -9.38471 -0.58752 -13.74263 -0.72512 -8.96163 

No. of Lags 8 7 17 20 10 9 10 20 

4-Year MSI ȹ MSI ln MSI ȹlnMSI LIBOR ȹ LIB ln LIB ȹ lnLIB 

Lag -0.00025 -1.18974 -0.00038 -1.03613 -0.00024 -1.033442 -0.00028 -0.88545 

t-stat -0.60031 -11.4899 -0.72385 -9.2297 -0.58788 -13.86244 -0.66186 -8.70163 

No. of Lags 17 16 17 20 10 9 10 20 

5-Year MSI ȹ MSI ln MSI ȹlnMSI LIBOR ȹ LIB ln LIB ȹ lnLIB 

Lag -0.000228 -1.13862 -0.00029 -1.09451 -0.00023 -1.04055 -0.00022 -0.88859 

t-stat -0.57537 -11.3505 -0.64674 -11.0055 -0.57206 -13.80702 -0.59258 -8.61413 

No. of Lags 17 16 17 16 10 9 10 20 

7-Year MSI ȹ MSI ln MSI ȹlnMSI LIBOR ȹ LIB ln LIB ȹ lnLIB 

Lag -0.000238 -1.28483 -0.00023 -1.39069 -0.0002 -1.038916 -0.00016 -0.86352 

t-stat -0.54135 -39.0355 -0.53531 -15.3333 -0.53828 -13.94831 -0.50227 -8.46408 

No. of Lags 2 1 10 9 10 9 10 20 

10-Year MSI ȹ MSI ln MSI ȹlnMSI LIBOR ȹ LIB ln LIB ȹ lnLIB 

Lag -0.00016 -1.07443 -0.00013 -1.06737 -0.00018 -1.041503 -0.00012 -0.85388 

t-stat -0.49694 -10.9206 -0.46438 -10.9454 -0.51599 -13.95931 -0.45392 -8.32844 

No. of Lags 17 16 17 16 10 9 20 20 

Significance Level 0.01 0.025 0.05 0.1     

Dickey-Fuller Critical Values -2.85 -2.23 -1.95 -1.62     
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Panel B: Tenors 15 through 30 
 

15-Year MSI ȹ MSI ln MSI ȹlnMSI LIBOR ȹ LIB ln LIB ȹ lnLIB 

Lag -0.00014 -1.12925 -0.0001 -1.13006 -0.00016 -0.99431 -9.9E-05 -0.8683 

t-stat -0.48285 -11.0729 -0.42707 -11.1747 -0.53509 -10.5113 -0.44472 -8.5683 

No. of Lags 17 16 17 16 17 16 17 20 

20-Year MSI ȹ MSI ln MSI ȹlnMSI LIBOR ȹ LIB ln LIB ȹ lnLIB 

Lag -0.00014 -1.18466 -9.8E-05 -1.18482 -0.00016 -1.03909 -9.5E-05 -0.85923 

t-stat -0.50658 -11.4287 -0.44206 -11.5398 -0.5544 -14.0586 -0.45408 -8.58345 

No. of Lags 17 16 17 16 10 9 17 20 

30-Year MSI ȹ MSI ln MSI ȹlnMSI LIBOR ȹ LIB ln LIB ȹ lnLIB 

Lag -0.00013 -1.27764 -8.7E-05 -1.27185 -0.00016 -1.03926 -9.2E-05 -0.85249 

t-stat -0.47438 -12.6212 -0.40533 -12.7533 -0.54648 -14.0508 -0.44136 -8.49022 

No. of Lags 16 15 16 15 10 9 17 20 

Significance Level 0.01 0.025 0.05 0.1     

Dickey-Fuller Critical Values -2.85 -2.23 -1.95 -1.62     
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Table 2.3: Lee-Strazicich crash test 

Below are the results for Lee and Strazicichôs Minimum Lagrange Multiplier Unit Root Test, 

with two structural breaks under endogenously determined break locations, with a break only in 

the level term (the ñcrashò model). We set a maximum of 5 lags and exclude the first and last 5% 

of the possible break dates. Critical values given here are for 100 observations; our results use 

the over 2000 observations from our dataset.  

 

Breaks in the Constant "Crash" Model       

Tenor Coefficient T-Stat Lags Breaks First Break Second Break 

1-year -0.0182 -3.6376 4 2 3/5/2004 12/16/2008 

2-year -0.0186 -3.9384 5 2 11/4/2004 11/19/2008 

3-year -0.207 -4.143 2 2 5/11/2004 11/19/2008 

4-year -0.205 -4.0445 5 2 1/21/2008 11/19/2008 

5-year -0.0208 -4.1166 2 2 1/21/2008 11/19/2008 

7-year -0.0284 -4.3269 3 2 6/10/2008 3/4/2008 

10-year -0.02 -3.9884 5 2 11/19/2008 5/14/2009 

15-year -0.0118 -3.1522 5 2 1/21/2008 12/15/2008 

20-year -0.0093 -2.9996 5 2 3/14/2008 9/12/2008 

30-year -0.0096 -3.0036 5 2 1/21/2008 9/12/2008 

Significance Level   0.01 0.05 0.10   

Critical Values   -4.545 -3.842 -3.504   
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Table 2.4: Lee-Strazicich both test 

Below are the results for Lee and Strazicichôs Minimum Lagrange Multiplier Unit Root Test, 

with two structural breaks under endogenously determined break locations, with a break in the 

level and slope terms. We set a maximum of 5 lags and exclude the first and last 5% of the 

possible break dates. Because the critical values are dependent on the location of the breaks, we 

create a plane from the three reported critical values nearest each break location pair results then 

solve for the appropriate critical values for each test. Critical values given here are for 100 

hundred observations; our results use the over 2000 observations from our dataset.  

 

Breaks in Both        LS Critical Values 

Tenor Coefficient T-Stat First Break Second Break 0.01 0.10 

1-year -0.0373 -5.2041 6/1/2006 8/21/2009 -6.41 -5.32 

2-year -0.0424 -5.9978 6/1/2006 9/22/2008 -6.43 -5.31 

3-year -0.0353 -5.5017 5/31/2006 9/22/2008 -6.43 -5.31 

4-year -0.343 -5.5189 5/31/2006 9/22/2008 -6.43 -5.31 

5-year -0.0303 -5.409 1/29/2007 12/10/2008 -6.38 -5.32 

7-year -0.0446 -5.2971 9/5/2008 4/10/2009 -6.28 -5.32 

10-year -0.0332 -5.1363 9/5/2008 4/10/2009 -6.28 -5.32 

15-year -0.0289 -4.865 9/5/2008 4/28/2009 -6.28 -5.32 

20-year -0.0234 -4.7247 9/4/2008 4/28/2009 -6.28 -5.32 

30-year -0.234 -4.7095 9/4/2008 5/6/2009 -6.28 -5.32 
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Table 2.5: Error correction vector  

The left side shows the linear regression of the error correction vector for the 1-year interest rate 

swaps. The regression is done with ordinary least squares and variances are corrected for 

heteroskedasticity and autocorrelation using Whiteôs robust standard error from January 1, 2003 

to March 3, 2011. This is the first part of the Engle-Granger Test for cointegration. The right side 

shows the regression of the first difference of the residuals from the previous linear regression as 

the dependent variable. The independent variable is the lagged residual. The null hypothesis of a 

coefficient equal to zero means that there is not cointegration. We reject the null hypothesis in 

favor of cointegration. ECV is defined as follows:  

ÌÎίȠȟ  ÌÎί Ƞȟ Ὡ 

 

Error Correction Vectors Cointegration Stat. 

N-year Constant Ln(MSI) Coefficient T-statistic 

1-year 0.1873 1.137 -0.0413 -6.762 

Standard Error 0.0025 0.0025 0.0061 

 2-year 0.1743 1.1368 -0.031 -5.876 

Standard Error 0.0023 0.0022 0.0053 

 3-year 0.1434 1.156 -0.0312 -5.842 

Standard Error 0.0029 0.0028 0.0053 

 4-year 0.1032 1.1805 -0.0319 -5.883 

Standard Error 0.0038 0.0035 0.0054 

 5-year 0.05 1.2148 -0.0278 -5.485 

Standard Error 0.0048 0.0043 0.0051 

 7-year -0.0413 1.2709 -0.0857 -9.776 

Standard Error 0.0075 0.0063 0.0088 

 10-year -0.1636 1.3424 -0.0291 -5.618 

Standard Error 0.0095 0.0076 0.0052 

 15-year -0.3234 1.4284 -0.0261 -5.319 

Standard Error 0.0137 0.0102 0.0049 

 20-year -0.3963 1.4605 -0.0214 -4.817 

Standard Error 0.0156 0.0113 0.0044 

 30-year -0.5307 1.5353 -0.0241 -5.106 

Standard Error 0.0174 0.0124 0.0047 
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Table 2.6: VAR EC model 

Shown below is the VAR-type model incorporating the above error correction term from January 

1, 2003 to March 4, 2011. The LHS is the first difference of the natural logarithm of either the 

MSI-based swap fixed rates or the LIBOR-based swap fixed rates. The significance of Ŭ in the 

first regression shows that MSI error corrects towards LIBOR (LIB). Lag length (n) selection 

was done using the BIC. The following regression is used:  
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Panel A: Tenors 1 through 5 

 

1-Year Swaps           

LHS Var. Ŭ Constant ȹlnLIB(t-1) ȹlnLIB(t-2)  ȹlnMSI(t-1)  ȹlnMSI(t-2) 

ȹlnMSI -0.005 -0.001 0.250 -0.017 -0.125 -0.107 

t-stat -0.634 -0.956 6.811 -0.472 -3.586 -3.091 

ȹlnLIB 0.023 -0.001 -0.042 -0.129 0.153 0.024 

t-stat 2.835 -1.014 -1.215 -3.736 4.672 0.724 

2-Year Swaps           

LHS Var. Ŭ Constant ȹlnLIB(t-1) ȹlnLIB(t-2)  ȹlnMSI(t-1)  ȹlnMSI(t-2) 

ȹlnMSI -0.002 0.000 0.116 -0.113 -0.102 -0.005 

t-stat -0.166 -0.682 2.360 -2.304 -2.029 -0.095 

ȹlnLIB 0.021 0.000 -0.101 -0.157 0.119 0.062 

t-stat 1.957 -0.662 -2.012 -3.155 2.337 1.210 

3-Year Swaps           

LHS Var. Ŭ Constant ȹlnLIB(t-1) ȹlnLIB(t-2)  ȹlnMSI(t-1)  ȹlnMSI(t-2) 

ȹlnMSI -0.006 0.000 0.110 -0.141 -0.113 0.026 

t-stat -0.546 -0.509 2.335 -2.991 -2.305 0.543 

ȹlnLIB 0.017 0.000 -0.089 -0.186 0.093 0.091 

t-stat 1.628 -0.517 -1.825 -3.833 1.849 1.824 

4-Year Swaps           

LHS Var. Ŭ Constant ȹlnLIB(t-1) ȹlnLIB(t-2)  ȹlnMSI(t-1)  ȹlnMSI(t-2) 

ȹlnMSI -0.012 0.000 0.139 -0.131 -0.145 0.021 

t-stat -1.189 -0.412 3.046 -2.882 -3.058 0.441 

ȹlnLIB 0.010 0.000 -0.092 -0.201 0.096 0.104 

t-stat 0.932 -0.437 -1.940 -4.279 1.961 2.126 

5-Year Swaps           

LHS Var. Ŭ Constant ȹlnLIB(t-1) ȹlnLIB(t-2)  ȹlnMSI(t-1)  ȹlnMSI(t-2) 

ȹlnMSI -0.013 0.000 0.021 -0.120 -0.023 0.005 

t-stat -1.426 -0.356 0.472 -2.675 -0.474 0.102 

ȹlnLIB 0.006 0.000 -0.162 -0.194 0.148 0.092 

t-stat 0.631 -0.379 -3.360 -4.028 2.851 1.787 
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Panel B: Tenors 7 through 30 

 

7-Year Swaps               

LHS Var. Ŭ Constant ȹlnLIB(t-1) ȹlnLIB(t-2) ȹlnLIB(t-3)  ȹlnMSI(t-1)  ȹlnMSI(t-2)  ȹlnMSI(t-3) 

ȹlnMSI -0.035 0.000 0.342 0.055 -0.002 -0.427 -0.168 -0.024 

t-stat -3.407 -0.262 9.099 1.413 -0.064 -12.446 -4.622 -0.729 

ȹlnLIB -0.003 0.000 -0.063 -0.168 -0.057 0.027 0.085 0.097 

t-stat -0.345 -0.326 -1.872 -4.816 -1.702 0.889 2.623 3.253 

10-Year Swaps               

LHS Var. Ŭ Constant ȹlnLIB(t-1) ȹlnLIB(t-2)  ȹlnMSI(t-1)  ȹlnMSI(t-2) 
  

ȹlnMSI -0.017 0.000 0.094 -0.123 -0.096 0.015 

  t-stat -2.363 -0.256 2.494 -3.258 -2.255 0.352 

  ȹlnLIB -0.002 0.000 -0.174 -0.189 0.166 0.109 

  t-stat -0.250 -0.289 -4.104 -4.483 3.497 2.323 

  
15-Year Swaps           

  
LHS Var. Ŭ Constant ȹlnLIB(t-1) ȹlnLIB(t-2)  ȹlnMSI(t-1)  ȹlnMSI(t-2) 

  
ȹlnMSI -0.016 0.000 0.164 -0.013 -0.170 -0.091 

  t-stat -2.555 -0.243 4.504 -0.355 -4.212 -2.276 

  ȹlnLIB -0.004 0.000 -0.113 -0.066 0.089 -0.009 

  t-stat -0.555 -0.312 -2.795 -1.632 1.976 -0.213 

  
20-Year Swaps       

    LHS Var. Ŭ Constant ȹlnLIB(t-1)  ȹlnMSI(t-1) 
 

 
  

ȹlnMSI -0.016 0.000 0.164 -0.178 

    t-stat -2.754 -0.252 4.228 -4.175 

    ȹlnLIB -0.006 0.000 -0.054 0.032 

    t-stat -0.887 -0.309 -1.267 0.677 

    
30-Year Swaps           

  
LHS Var. Ŭ Constant ȹlnLIB(t-1) ȹlnLIB(t-2)  ȹlnMSI(t-1)  ȹlnMSI(t-2) 

  
ȹlnMSI -0.014 0.000 0.149 -0.061 -0.158 -0.049 

  t-stat -2.517 -0.228 4.013 -1.637 -3.787 -1.182 

  ȹlnLIB -0.003 0.000 -0.069 -0.099 0.041 0.017 

  t-stat -0.474 -0.314 -1.644 -2.375 0.867 0.363 
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Table 2.7: Testing the number of breaks 

Below are selected results from the Bai-Perron methodology performed with an optimal lag 

length of 1. Model selection between the breaks in the constant, AR-term, or both was done 

through the use of the BIC function. The model selected and shown is the model with breaks in 

the constant and AR term from January 1, 2003 to March 4, 2011. Bai-Perron critical values are 

shown next to the selected modelôs F-statistic. The functional form can be represented as 

follows:   

ὸὥὼὴὶέὼώ ὸ  ὸὸὥὼὴὶέὼώ‐ 

 

Structural Breaks BIC(p) 

  N-Year taxproxy No Breaks Constant AR(1) Term Both F(m) 0.01 Sig 

1-Year  -8.23 -8.26 -8.25 -8.41 54.50 10.28 

Number of Breaks 5 5 5 

  2-Year  -8.99 -9.01 -9.01 -9.10 36.14 10.28 

Number of Breaks 5 5 5 

  3-Year  -9.15 -9.17 -9.17 -9.24 30.44 10.28 

Number of Breaks 5 5 5 

  4-Year  -9.25 -9.27 -9.27 -9.35 49.71 12.06 

Number of Breaks 5 5 3 

  5-Year  -9.47 -9.49 -9.49 -9.57 50.25 12.06 

Number of Breaks 5 5 3 

  7-Year  -8.83 -8.89 -8.89 -9.12 85.65 10.28 

Number of Breaks 5 5 5 

  10-Year  -9.57 -9.62 -9.61 -9.72 45.47 10.28 

Number of Breaks 5 5 5 

  15-Year  -9.68 -9.73 -9.73 -9.86 65.04 11.00 

Number of Breaks 5 5 4 

  20-Year  -9.98 -10.03 -10.02 -10.10 44.95 11.00 

Number of Breaks 5 5 4 

  30-Year  -9.79 -9.84 -9.83 -9.94 46.91 10.28 

Number of Breaks 5 5 5 
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Table 2.8: Confidence interval of breaks 

Below are the confidence intervals for each break from the Bai-Perron methodology. The model 

selected and shown is the model with breaks only in the constant term from January 1, 2003 to 

March 4, 2011. All results are more significant than required at the 1% level using Bai and 

Perronôs asymptotic critical values. The functional form can be represented as follows:   

ὸὥὼὴὶέὼώ ὸ  ὸὸὥὼὴὶέὼώ‐ 

Panel A: Tenors 1 through 5 

 
1-Year taxproxy Number of Breaks= 5 

 Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.495 0.456 0.910 

8/19/2003 8/19/2003 8/22/2003 0.856 0.011 0.866 

4/27/2004 4/26/2004 5/17/2004 0.021 0.971 0.724 

12/15/2008 11/12/2008 12/16/2008 0.418 0.517 0.865 

3/19/2009 3/18/2009 6/17/2009 0.011 0.986 0.786 

8/18/2010 7/27/2010 8/19/2010 0.496 0.458 0.915 

2-Year taxproxy Number of Breaks= 5 

 Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.535 0.372 0.852 

3/26/2003 3/25/2003 7/25/2003 0.003 0.995 0.600 

9/12/2008 6/3/2008 9/12/2008 0.128 0.842 0.810 

12/15/2008 11/14/2008 12/18/2008 0.547 0.382 0.885 

3/3/2009 3/2/2009 4/13/2009 0.062 0.923 0.805 

8/11/2010 3/30/2010 8/12/2010 0.343 0.608 0.875 

3-Year taxproxy Number of Breaks= 5 

 Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.005 0.993 0.714 

9/12/2008 6/27/2008 9/15/2008 0.130 0.840 0.813 

12/15/2008 12/4/2008 12/18/2008 0.538 0.401 0.898 

3/12/2009 3/11/2009 3/27/2009 0.066 0.917 0.795 

8/11/2010 7/20/2010 8/12/2010 0.452 0.475 0.861 

11/25/2010 11/17/2010 12/9/2010 0.373 0.557 0.842 

4-Year taxproxy Number of Breaks= 3 

 Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.005 0.994 0.780 

9/12/2008 7/30/2008 9/15/2008 0.135 0.836 0.823 

12/15/2008 11/28/2008 12/18/2008 0.550 0.398 0.914 

3/13/2009 3/12/2009 4/9/2009 0.035 0.956 0.802 

5-Year taxproxy Number of Breaks= 3 

 Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.005 0.993 0.738 

9/12/2008 4/7/2008 9/15/2008 0.079 0.905 0.830 

12/15/2008 11/21/2008 12/17/2008 0.543 0.413 0.925 

3/18/2009 3/17/2009 4/15/2009 0.034 0.958 0.805 
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Panel B: Tenors 7 through 30 

 

7-Year taxproxy Number of Breaks= 5 

 Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.033 0.959 0.793 

6/1/2004 5/26/2004 6/2/2004 0.767 -0.029 0.745 

8/18/2004 8/13/2004 8/23/2004 0.015 0.979 0.714 

12/15/2008 12/8/2008 12/16/2008 0.518 0.446 0.935 

3/31/2009 3/30/2009 5/13/2009 0.032 0.960 0.800 

11/24/2010 7/16/2010 11/25/2010 0.693 0.158 0.823 

10-Year taxproxy Number of Breaks= 5 

 Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.006 0.991 0.667 

9/10/2008 7/3/2008 9/11/2008 0.151 0.816 0.821 

11/19/2008 10/10/2008 11/20/2008 0.520 0.453 0.951 

4/1/2009 3/31/2009 6/26/2009 0.126 0.850 0.840 

7/8/2009 6/18/2009 7/17/2009 0.246 0.693 0.801 

9/18/2009 9/15/2009 10/16/2009 0.017 0.979 0.810 

15-Year taxproxy Number of Breaks= 4 

 Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.008 0.990 0.761 

9/5/2008 7/21/2008 9/8/2008 0.124 0.852 0.838 

11/19/2008 10/24/2008 11/20/2008 0.621 0.368 0.983 

4/1/2009 3/31/2009 4/28/2009 0.139 0.838 0.858 

7/14/2009 7/6/2009 9/2/2009 0.015 0.982 0.806 

20-Year taxproxy Number of Breaks= 4 

 Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.007 0.990 0.775 

9/5/2008 7/17/2008 9/8/2008 0.084 0.904 0.873 

11/20/2008 10/20/2008 11/21/2008 0.554 0.449 1.005 

4/1/2009 3/31/2009 4/15/2009 0.132 0.848 0.866 

7/24/2009 7/16/2009 9/4/2009 0.012 0.986 0.840 

30-Year taxproxy Number of Breaks= 5 

 Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.008 0.989 0.727 

9/10/2008 7/9/2008 9/11/2008 0.107 0.878 0.877 

11/19/2008 10/29/2008 11/20/2008 0.580 0.440 1.036 

4/1/2009 3/31/2009 4/23/2009 0.127 0.859 0.901 

7/8/2009 6/29/2009 7/28/2009 0.164 0.806 0.845 

11/4/2009 10/28/2009 12/11/2009 0.010 0.989 0.909 
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Table 2.9: Magnitudes of breaks 

For each breakpoint, we give the level of the fixed leg of the fixed-for-floating swap as well as 

the percentage-of-LIBOR of the basis swap used as our taxproxy. The differences shown are for 

the change in each time series for the 95% confidence interval around the break date. The 

taxproxy moves opposite the implied marginal tax rate, so a 10% increase in the taxproxy is a 

10% decrease in the implied marginal tax rate.  

 

Panel A: Tenors 1 and 2 

 

1-year taxproxy       2-year taxproxy     

Breakpoint Lower 95% Upper 95% Diff.  Breakpoint Lower 95% Upper 95% Diff.  

8/19/2003 8/19/2003 8/22/2003     3/26/2003 3/25/2003 7/25/2003   

taxproxy= 89.1% 87.1% -2.0% 

 

taxproxy= 85.5% 111.5% 26.0% 

LIBOR= 1.378 1.448 0.070 

 

LIBOR= 1.905 1.708 -0.197 

MSI= 1.227 1.261 0.033 

 

MSI= 1.629 1.515 0.276 

4/27/2004 4/26/2004 5/17/2004     9/12/2008 6/3/2008 9/12/2008   

taxproxy= 85.7% 82.6% -3.1% 

 

taxproxy= 71.2% 69.2% -2.0% 

LIBOR= 1.773 2.024 0.251 

 

LIBOR= 3.256 3.178 -0.078 

MSI= 1.520 1.672 0.153 

 

MSI= 2.317 2.198 -0.119 

12/15/2008 11/12/2008 12/16/2008     12/15/2008 11/14/2008 12/18/2008   

taxproxy= 75.0% 80.6% 5.7% 

 

taxproxy= 79.3% 94.5% 15.1% 

LIBOR= 1.986 1.403 -0.583 

 

LIBOR= 2.380 1.528 -0.852 

MSI= 1.489 1.132 -0.357 

 

MSI= 1.888 1.443 -0.445 

3/19/2009 3/18/2009 6/17/2009     3/3/2009 3/2/2009 4/13/2009   

taxproxy= 92.2% 72.5% -19.7% 

 

taxproxy= 86.2% 75.6% -10.6% 

LIBOR= 1.260 0.961 -0.300 

 

LIBOR= 1.577 1.460 -0.117 

MSI= 1.162 0.697 -0.466 

 

MSI= 1.360 1.104 -0.257 

8/18/2010 7/27/2010 8/19/2010     8/11/2010 3/30/2010 8/12/2010   

taxproxy= 73.3% 87.6% 14.3% 

 

taxproxy= 79.9% 81.8% 2.0% 

LIBOR= 0.545 0.431 -0.115 

 

LIBOR= 1.214 0.735 -0.480 

MSI= 0.400 0.377 -0.023   MSI= 0.970 0.601 -0.369 

 

  



 

47 

 

Panel B: Tenors 3 and 4 

 

3-year taxproxy       4-year taxproxy     

Breakpoint Lower 95% Upper 95% Diff.    Breakpoint Lower 95% Upper 95% Diff.  

9/12/2008 6/27/2008 9/15/2008     9/12/2008 7/30/2008 9/15/2008   

taxproxy= 72.7% 74.7% 2.0% 

 

taxproxy= 72.0% 75.2% 3.2% 

LIBOR= 3.896 3.041 -0.855 

 

LIBOR= 4.090 3.281 -0.809 

MSI= 2.831 2.271 -0.560 

 

MSI= 2.943 2.467 -0.476 

12/15/2008 12/4/2008 12/18/2008     12/15/2008 11/28/2008 12/18/2008   

taxproxy= 84.9% 95.0% 10.1% 

 

taxproxy= 90.9% 93.9% 3.1% 

LIBOR= 2.195 1.724 -0.472 

 

LIBOR= 2.574 1.889 -0.685 

MSI= 1.863 1.637 -0.226 

 

MSI= 2.339 1.775 -0.565 

3/12/2009 3/11/2009 3/27/2009     3/13/2009 3/12/2009 4/9/2009   

taxproxy= 88.8% 86.4% -2.5% 

 

taxproxy= 92.6% 82.9% -9.7% 

LIBOR= 2.034 1.763 -0.271 

 

LIBOR= 2.241 2.205 -0.036 

MSI= 1.8065 1.5225 -0.284   MSI= 2.074 1.827 -0.247 

8/11/2010 7/20/2010 8/12/2010   

     taxproxy= 83.0% 83.8% 0.8% 

     LIBOR= 1.162 1.053 -0.109 

     MSI= 0.964 0.882 -0.082 

     11/25/2010 11/17/2010 12/9/2010   

     taxproxy= 86.5% 84.3% -2.1% 

     LIBOR= 0.979 1.217 0.238 

     MSI= 0.847 1.027 0.180 
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Panel C: Tenors 5 and 7 

 

5-year taxproxy       7-year taxproxy     

Breakpoint Lower 95% Upper 95% Diff.    Breakpoint Lower 95% Upper 95% Diff.  

9/12/2008 4/7/2008 9/15/2008     6/1/2004 5/26/2004 6/2/2004   

taxproxy= 78.6% 75.9% -2.8% 

 

taxproxy= 77.2% 68.5% -8.7% 

LIBOR= 3.507 3.453 -0.054 

 

LIBOR= 4.743 4.828 0.085 

MSI= 2.758 2.621 -0.138 

 

MSI= 3.663 3.308 -0.355 

12/15/2008 11/21/2008 12/17/2008     8/18/2004 8/13/2004 8/23/2004   

taxproxy= 97.2% 91.0% -6.3% 

 

taxproxy= 75.6% 75.1% -0.5% 

LIBOR= 3.010 2.072 -0.938 

 

LIBOR= 4.284 4.327 0.043 

MSI= 2.927 1.885 -1.043 

 

MSI= 3.239 3.250 0.011 

3/18/2009 3/17/2009 4/15/2009     12/15/2008 12/8/2008 12/16/2008   

taxproxy= 91.6% 83.3% -8.4% 

 

taxproxy= 87.4% 90.3% 2.9% 

LIBOR= 2.598 2.277 -0.321 

 

LIBOR= 2.864 2.247 -0.617 

MSI= 2.381 1.897 -0.485   MSI= 2.502 2.028 -0.474 

     

3/31/2009 3/30/2009 5/13/2009   

    
 

taxproxy= 92.1% 85.1% -7.0% 

     

LIBOR= 2.588 2.866 0.279 

     

MSI= 2.384 2.438 0.055 

     

11/24/2010 7/16/2010 11/25/2010   

     

taxproxy= 85.1% 70.8% -14.3% 

     

LIBOR= 2.452 2.338 -0.114 

     

MSI= 2.087 1.656 -0.431 
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Panel D: Tenors 10 and 15 

 

10-year taxproxy       15-year taxproxy     

Breakpoint Lower 95% Upper 95% Diff.    Breakpoint Lower 95% Upper 95% Diff.  

9/10/2008 7/3/2008 9/11/2008     9/5/2008 7/21/2008 9/8/2008   

taxproxy= 73.4% 75.3% 1.9% 

 

taxproxy= 111.1% 111.3% 0.2% 

LIBOR= 4.736 4.231 -0.505 

 

LIBOR= 3.405 4.474 1.070 

MSI= 3.477 3.188 -0.290 

 

MSI= 3.783 4.980 1.198 

11/19/2008 10/10/2008 11/20/2008     11/19/2008 10/24/2008 11/20/2008   

taxproxy= 85.6% 101.4% 15.8% 

 

taxproxy= 80.7% 93.7% 13.0% 

LIBOR= 4.423 3.143 -1.280 

 

LIBOR= 4.191 3.560 -0.631 

MSI= 3.788 3.188 -0.600 

 

MSI= 3.382 3.336 -0.046 

4/1/2009 3/31/2009 6/26/2009     4/1/2009 3/31/2009 4/28/2009   

taxproxy= 95.7% 80.5% -15.2% 

 

taxproxy= 98.5% 86.4% -12.2% 

LIBOR= 2.864 3.742 0.879 

 

LIBOR= 3.155 3.446 0.291 

MSI= 2.740 3.013 0.274 

 

MSI= 3.109 2.977 -0.133 

7/8/2009 6/18/2009 7/17/2009     7/14/2009 7/6/2009 9/2/2009   

taxproxy= 81.2% 81.9% 0.8% 

 

taxproxy= 85.4% 80.8% -4.7% 

LIBOR= 4.093 3.886 -0.207 

 

LIBOR= 4.020 3.827 -0.193 

MSI= 3.323 3.185 -0.139   MSI= 3.434 3.090 -0.344 

9/18/2009 9/15/2009 10/16/2009   

     taxproxy= 79.5% 80.5% 1.0% 

     LIBOR= 3.667 3.598 -0.069 

     MSI= 2.917 2.898 -0.019 
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Panel E: Tenors 20 and 30 

 

20-year taxproxy       30-year taxproxy     

Breakpoint Lower 95% Upper 95% Diff.    Breakpoint Lower 95% Upper 95% Diff.  

9/5/2008 7/17/2008 9/8/2008     9/10/2008 7/9/2008 9/11/2008   

taxproxy= 77.5% 77.3% -0.2% 

 

taxproxy= 77.3% 79.7% 2.4% 

LIBOR= 5.033 4.564 -0.469 

 

LIBOR= 4.895 4.563 -0.332 

MSI= 3.903 3.528 -0.375 

 

MSI= 3.782 3.635 -0.147 

11/20/2008 10/20/2008 11/21/2008     11/19/2008 10/29/2008 11/20/2008   

taxproxy= 87.8% 100.1% 12.3% 

 

taxproxy= 85.7% 101.0% 15.3% 

LIBOR= 4.382 3.500 -0.882 

 

LIBOR= 4.272 3.278 -0.995 

MSI= 3.850 3.505 -0.345 

 

MSI= 3.660 3.311 -0.349 

4/1/2009 3/31/2009 4/15/2009     4/1/2009 3/31/2009 4/23/2009   

taxproxy= 100.7% 90.0% -10.7% 

 

taxproxy= 103.7% 93.0% -10.8% 

LIBOR= 3.204 3.292 0.088 

 

LIBOR= 3.237 3.409 0.172 

MSI= 3.225 2.962 -0.264 

 

MSI= 3.358 3.169 -0.189 

7/24/2009 7/16/2009 9/4/2009     7/8/2009 6/29/2009 7/28/2009   

taxproxy= 86.0% 82.1% -3.9% 

 

taxproxy= 89.1% 85.8% -3.3% 

LIBOR= 4.171 4.066 -0.105 

 

LIBOR= 4.115 4.359 0.244 

MSI= 3.586 3.338 -0.248   MSI= 3.665 3.739 0.074 

     

11/4/2009 10/28/2009 12/11/2009   

     

taxproxy= 84.2% 81.9% -2.3% 

     

LIBOR= 4.172 4.338 0.166 

     

MSI= 3.513 3.552 0.039 
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Table 2.10: Rated municipal defaults 

Shown below are the number of defaults by issuer and type from 1970 to 2011. This chart is 

taken from Appleson, et al. (2012).  

 

 Number of Defaults   

 Moodyôs S&P Number of Issuers Size of Market 

Municipal  71 47 54,486 $3.7 trillion 

Corporate 1,784 2,015 5,656 $7.8 trillion 
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Table 2.11: Tax-exempt bond issuances 

Shown below are the number and amount of issuances for tax-exempt governmental bonds. 

Private activity bonds are not included because they are still subject to the AMT. These records 

are taken from irs.gov.  

 

Year Number of Issues Amount of Issues (in millions) 

2003 28085 $353,994 

2004 25889 $330,413 

2005 

  2006 25226 $319,394 

2007 25253 $379,326 

2008 24275 $334,373 

2009 22363 $340,658 

2010 21861 $293,625 

2011 15718 $232,544 
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Table 2.A.1: McLeod-Li test 

Shown below are results from the McLeod-Li test for the presence of nonlinearities. The Box-

Jenkins Methodology selected an AR(1) model for each tenor for the model of the mean. Five 

lagged squared residuals from the model of the mean are used for the test. The current squared 

residual is significantly related to lagged observations for each tenor. The F-statistic is shown for 

the null hypothesis that all the coefficients on lagged squared residuals are equal to zero. The 

corresponding p-values are also shown.  

 

Tenor F-stat p-value 

1-year 40.592 0.000 

2-year 53.458 0.000 

3-year 39.218 0.000 

4-year 54.733 0.000 

5-year 32.623 0.000 

7-year 212.609 0.000 

10-year 15.555 0.000 

15-year 103.206 0.000 

20-year 73.811 0.000 

30-year 112.336 0.000 
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Table 2.A.2: Bush tax cut breaks 

Below are selected results from the Bai-Perron methodology performed with an optimal lag 

length of 1. Model selection between the breaks in the constant, AR-term, or both was done 

through the use of the BIC function. The model selected and shown is the model with breaks in 

the constant and AR term from April 20, 2001 to January 1, 2004. Bai-Perron critical values are 

shown next to the selected modelôs F-statistic. The functional form can be represented as 

follows:   

ὸὥὼὴὶέὼώ ὸ  ὸὸὥὼὴὶέὼώ‐ 

 
Structural Breaks BIC(p) 

  N-Year taxproxy No Breaks Constant AR(1) Term Both F(m) 0.01 Sig 

1-Year  -6.38 -6.42 -6.38 -6.57 23.28 10.28 

Number of Breaks 4 0 5 

  2-Year  -6.92 -7.11 -7.05 -7.41 84.57 12.06 

Number of Breaks 5 5 3 

  3-Year  -7.08 -7.26 -7.15 -7.61 254.37 16.64 

Number of Breaks 5 5 1 

  4-Year  -7.14 -7.33 -7.25 -7.67 255.72 16.64 

Number of Breaks 5 5 1 

  5-Year  -9.62 -9.63 -9.62 -9.67 10.12 10.28 

Number of Breaks 4 0 5 

  7-Year  -7.20 -7.46 -7.40 -7.72 249.57 16.64 

Number of Breaks 5 5 1 

  10-Year  -10.10 -10.11 -10.10 -10.15 11.55 11.00 

Number of Breaks 5 0 4 

  15-Year  -10.17 -10.18 -10.17 -10.23 11.09 10.28 

Number of Breaks 5 0 5 

  20-Year  -10.11 -10.12 -10.11 -10.17 14.20 12.06 

Number of Breaks 5 0 3 
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Table 2.A.3: Confidence interval of Bush tax cuts 

Below are the confidence intervals, CI, for each break from the Bai-Perron methodology. The 

model selected and shown is the model with breaks only in the constant term from April 20, 

2001 to January 1, 2004. All results are more significant than required at the 5% level using Bai 

and Perronôs asymptotic critical values.  

 

Panel A: Tenors 1 through 5 

 

1-Year taxproxy Number of Breaks 5   

Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.253 0.675 0.777 

7/13/2001 7/11/2001 9/3/2001 0.648 0.046 0.680 

9/21/2001 9/18/2001 10/3/2001 0.127 0.843 0.810 

2/4/2002 12/6/2001 2/15/2002 0.535 0.265 0.728 

6/18/2002 6/17/2002 7/17/2002 0.140 0.845 0.901 

8/19/2003 8/13/2003 8/26/2003 0.909 -0.050 0.866 

2-Year taxproxy Number of Breaks 3   

Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.674 -0.023 0.659 

8/3/2001 8/1/2001 8/7/2001 0.053 0.929 0.740 

1/31/2002 1/30/2002 2/6/2002 0.654 0.084 0.714 

4/11/2002 4/10/2002 4/12/2002 0.013 0.984 0.843 

3-Year taxproxy Number of Breaks 1   

Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.682 -0.022 0.667 

8/3/2001 8/2/2001 8/7/2001 0.014 0.983 0.789 

4-Year taxproxy Number of Breaks 1   

Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.688 -0.021 0.674 

8/3/2001 8/2/2001 8/6/2001 0.014 0.982 0.777 

5-Year taxproxy Number of Breaks 5   

Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.692 -0.003 0.690 

9/17/2001 9/13/2001 1/17/2002 0.027 0.962 0.695 

1/10/2002 12/6/2001 1/18/2002 0.260 0.639 0.721 

3/21/2002 3/20/2002 4/24/2002 0.001 0.999 1.757 

3/12/2003 3/7/2003 3/13/2003 0.679 0.174 0.821 

5/21/2003 5/20/2003 7/18/2003 0.025 0.969 0.806 
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Panel B: Tenors 7 through 20 

 

7-Year taxproxy Number of Breaks 1   

Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.710 -0.022 0.695 

8/6/2001 8/3/2001 8/7/2001 0.015 0.980 0.769 

10-Year taxproxy Number of Breaks 4   

Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.622 0.155 0.736 

11/13/2001 11/13/2001 11/18/2002 0.149 0.786 0.696 

1/22/2002 1/22/2002 5/28/2002 0.000 1.000 -14.856 

3/3/2003 2/17/2003 3/4/2003 0.517 0.355 0.801 

5/12/2003 5/9/2003 9/24/2003 0.032 0.959 0.786 

15-Year taxproxy Number of Breaks 5   

Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.748 -0.011 0.740 

9/4/2001 9/3/2001 11/23/2001 0.064 0.920 0.799 

11/13/2001 9/12/2001 11/22/2001 0.172 0.761 0.718 

1/22/2002 1/21/2002 4/16/2002 0.004 0.995 0.819 

3/3/2003 2/6/2003 3/4/2003 0.551 0.314 0.803 

5/12/2003 5/9/2003 8/12/2003 0.021 0.973 0.785 

20-Year taxproxy Number of Breaks 3   

Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean 

Initial 

  

0.758 -0.011 0.749 

8/27/2001 8/24/2001 11/2/2001 0.063 0.922 0.808 

11/13/2001 9/28/2001 11/26/2001 0.188 0.745 0.737 

1/22/2002 1/211/2002 3/20/2002 0.014 0.982 0.792 

 

  



Figure 2.1:  Time series of the fixed legs of the 1-year swaps 

 The graph shown below is the 1-year LIBOR swap rate and the 1-year MSI swap rate over the entire range of our data. The lighter 

line that is on top is the LIBOR-based swap. They co-vary with a stationary proportional spread.  
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Figure 2.2: Impulse response functions 

Table 2.6 shows our results for an ECM. Each of these models implies an impulse response 

which is shown below. The time steps are in days. It is important to note that several of the terms 

are not statistically significant.  

 

Panel A: Tenors 1 through 3 
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Panel B: Tenors 4 through 7 
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Panel C: Tenors 10 through 20 
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Panel D: Tenor 30 
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Figure 2.3:  Time series of money market accounts 

The graph shown below gives the time series of weekly aggregate money market funds. The blue 

line is taxable money market funds, and the red line is tax-exempt money market funds.  
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Figure 2.4: Time series of the proportion of tax-exempt money market accounts 

The graph shown below gives the time series of the proportion of tax-exempt money market funds invested.  

 

 

  



 

64 

 

Figure 2.A.1:  Time series of taxproxy during the Bush Tax Cuts 

The graph below shows the 1-year and 20-year taxproxyôs. The higher levels in the second half of the time period are consistent with a 

lower marginal tax rate. 
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CHAPTER 3: ASYMMETRIC RELATIONSHIPS BETWEEN IMPLIED AND REALIZED 

VOLATILITY  

3.1. Introduction 

There has always been a disconnect between expectations and reality. If unbiased, these 

errors would be evenly distributed around implied expectations, but with a number of financial 

time series this is not the case. This disconnect has implications about risk preferences. 

Researchers have found a number of clever ways to get around this issue. For example, in much 

of derivatives pricing, the endogenous relationship between risk and return is circumvented 

through the use of risk-neutral space. Financial research has primarily focused on the first 

statistical moment of datasets in the form of return, but there is evidence that the human 

behaviors that price risk in returns also price risk in implied volatilities. Andersen and 

Bondarenko (2007) find that implied volatility is almost always higher than realized volatility, 

RV. In reference to this, Ang, et al. (2006) remarks that it is almost certainly the case that 

implied and realized series behave differently--in this instance, because implied volatility will 

have some risk premium embedded in it. The ñPeso Problemò is another classic example of this 

phenomenon. In order to gain deeper insight into the relationship between implied and realized 

volatility, I use the CBOE Volatility Index, VIX, to proxy for implied volatility along with its 

corresponding realized volatility. 

There is a long and rich history of derivatives markets. Although forwards and futures 

contracts have traded consistently for hundreds of years, options have had a more sporadic 
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history. Investors can easily trade on whether prices will go up or down, but sometimes investors 

wish to trade on whether a series becomes more or less volatile. This trading could be 

speculative or could represent a desire to hedge changes in volatility. A number of trading 

strategies that provide liquidity are vulnerable to large price swings. In order to trade on 

volatility, some type of asymmetric instrument must be trading. One of the earliest successful 

options traders was Russell Sage who maintained a good-enough reputation to facilitate a well-

functioning options market. Since organized options exchanges did not exist, Sage could only 

maintain his business by consistently honoring his financial contracts. He also developed one of 

the most common volatility trading strategies the straddle8 (Jarrow and Chatterjea, 2013). 

Although the options trading business was wildly profitable, only those with an enormous 

amount of wealth and excellent reputations could facilitate this type of market. It wasnôt until 

Black-Scholes-Merton that options trading once again became popular.  

The advent of the Black-Scholes-Merton Option Pricing Model made option markets 

viable. The Chicago Board Options Exchange opened on April 26, 1973, and trading on 

volatility once again became a possibility for investors. A liquid options market allowed 

investors to trade on a number of outcomesðincluding volatility. Cash settlement was also an 

important innovation for these markets because it allowed investors to trade on an index without 

needing the underlying. In 1983, cash settled options on stock indices began trading on the 

CBOE. This allowed investors to easily trade on the volatility of large portions of the stock 

market and paved the way for further innovation.  

Brenner and Galai, in 1989, proposed the idea of an option that would allow investors to 

hedge changes in volatility (formalized in a paper published in 1993). Whaley (1993), in that 

                                                 

8He even went by the nickname ñOld Straddleò.   
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same issue of The Journal of Derivatives, laid out an argument for an index that would track 

market volatility along with futures and options. He argued that this would allow option market 

makers to hedge their volatility exposure much more cheaply than with options strategies. These 

indices would allow futures contracts to be written on volatility, giving an almost costless means 

for hedging volatility.  

The original VIX, which is now called the VXO, was a weighted average of the one 

month implied volatility taken from several at-the-money index options. These options were 

written on the S&P 100 because, at the time, these index options were the most widely traded, 

and, therefore, offered the most up-to-date price information. In order to better match recent 

market conditions, the VIX was changed to be based on the S&P 500. Instead of a weighted 

average, the VIX in its current form is designed to be a 30-day square root of an implied variance 

swap to allow for a term structure of volatility9. The options used to compute this index have also 

been changed to include a broader number of out-of-the-money options. These options are often 

used by hedgers under widely used strategies like portfolio insurance.10 Not only has this index 

provided a useful economic indicator and hedging instrument, the VIX and VXO have also 

facilitated a number of studies on the dynamics of volatility.  

The VIX index has provided an unprecedented way for investors to see the marketôs 

volatility expectations. As a measure of volatility, the VIX should have a number of unique 

characteristics. The VIX and realized volatility are bounded from below by zero. Introspection 

reveals that neither of these series should trend on towards infinity, but there is no upward bound 

                                                 

9 In the basic Black-Scholes-Merton Option Pricing Model the volatility increases by the square-

root of the time to maturity. The term structure of volatility allows for the influence of specific 

events that are likely to affect volatility like Federal Reserve meetings.  
10 Further details and arguments for this change can be found in Whaley (2009). 
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on their realizations. Although previous papers use a number of horse races to select among a 

wide array of time series models (Chen, 2002; Christensen and Hansen, 2002; Ang et al., 2006; 

Hung et al., 2009; and Kambourdis et al., 2013 among many others), I focus exclusively on a set 

of threshold and smooth threshold autoregressive models to characterize these series.  

My results reinforce several common findings in the literature. Although previous papers 

have mixed results on the order of integration for the VIX, I find that the series is stationary 

under a number of different specifications. The data does show a number of large positive spikes 

that quickly revert back to normal levels indicating asymmetric behavior. My tests indicate that 

the series has nonlinear and threshold effects. Though previous papers use basic threshold 

effects, they do not test for a wide variety of threshold behaviors. This study is set apart because 

I use a wide variety of STAR models to characterize the VIX in levels.  

These findings present an important question for risk managers. Based on my results it is 

not sufficient to use simply the most recent level of the VIX as a forward-looking indicator. My 

results imply that there is a complex relationship between the VIX and realized volatility. Of the 

information contained in the VIX, a large portion is derived from the previous 30 daysô realized 

volatility. The presence of threshold effects also means that the normal approach is flawed. There 

are times when almost all of the information necessary to forecast the VIX is contained in the 

previous 30 daysô RV. Using the previous dayôs VIX implies a unit root process. In stark contrast 

to this common approach, I find that the VIX is stationary and follows an ESTAR process.  

The remainder of this chapter is organized as follows: section 3.2 discusses the relevant 

literature; in section 3.3, I discuss my data, hypothesis development, and methodology; section 

3.4 reports the empirical findings; section 3.5 discusses several implications; and section 3.6 

presents my conclusions.  
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3.2. Literature Review 

There are two major lines of research that have characterized our understanding of 

implied volatility series. The first is the research that looks at the time series behavior of implied 

volatility and realized volatility. This research depends primarily on time series econometrics to 

characterize these series. The second area of research develops option pricing models that use the 

VIX or related index as the underlying. For these models some assumptions are made about the 

stochastic process of the VIX. Empirical testing of these models and their correspondence, or 

lack thereof, to observed prices reveals information about the underlying series.  

Ang et al. (2006) mention that VIX should not be a perfect measure or forecast of 

realized volatility because if it were, then it would need to have a zero risk premium. They also 

use the VXO to examine the influence of aggregate risk on the cross-section of stock returns and 

find that stocks with high sensitivity to the VXO have lower average returns. Several papers 

point to the desire of investors to hedge volatility changes as they are related to investment 

opportunities (Campbell, 1993; Campbell, 1996; Chen, 2002). These papers show that an 

increase in volatility means that investment opportunities have declined. Under these models 

risk-averse investors would prefer a hedging instrument that paid positive returns when volatility 

increases.  

Several assumptions lay the foundation for time series econometrics, the core of which is 

that the data generating process is consistent over time (or for each sub period of time). Using 

data that started before the US Civil War, Schwert and Pagan (1990) find that over several 

distinct periods of time, the stock market is not covariance stationary. Correspondingly, Schwert 

(1989) finds that de-monthly trended moving average models are not sufficient due to concerns 

about covariance stationarity. I follow a number of papers that use nonlinear models to address 
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this issue. More recently, Schwert (2011) uses volatility data for a number of decades to put the 

recent financial crisis in perspective. He argues that although there were long periods of 

persistent high stock market volatility during the Great Depression, the pattern that appears since 

then is strong mean reversion. This is consistent with my unit-root tests that find the VIX and its 

corresponding realized volatility to be stationary.  

The forecasting and, particularly, the prediction of increased stock market volatility have 

attracted a lot of research. Christensen and Hansen (2002) use implied volatilities to construct a 

forecasting series for realized return volatility. They use implied call, implied put, and historical 

return volatility. They show that implied volatility is an efficient forecast of realized return 

volatility. Hung, et al. (2009) use the asymmetric Glosten-Jagannathan-Runkle (1993) GARCH 

model to compare one step ahead forecasts and find that combining the VIX with the GJR-

GARCH model was preferable for volatility forecasting. This is similar in form to the threshold 

models I present.11 Similarly, Kambourdis, et al. (2013) use a number of GARCH and implied 

volatility models to compare their ability to forecast stock market volatility. They find that 

implied volatility models contain some additional information not found in GARCH models. 

They also note that the presence of asymmetric effects significantly improves the performance of 

their models.  

Adhikari and Hilliard (2014) use the VIX and VXO to look at the Granger Causality 

between each of these series and its corresponding realized volatility. They find that although 

these series are designed to be forward looking, they depend substantially on the previous 

                                                 

11 The GJR-GARCH model can be represented as follows:   

„ Ὧ „ „ • Ὅ Ὡ 
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monthôs realized volatility. Their data set ends right after the major volatility spike in October 

2008. This spike seems to cause their unit root test to fail to reject the hypothesis of a unit root. 

In addition to tests on the properties of the time series of the VIX, the VIX option pricing 

literature gives insight into the stochastic properties of these second order moment series.  

A recent literature has developed to price VIX derivatives. Since the VIX provides an 

important market index for risk exposure, a number of derivatives that use it as the underlying 

have started trading. Wang and Daigler (2009) do empirical testing of a number of option pricing 

models by comparing their predicted option prices to the current option prices. They find that 

simpler models work better, but no model is consistently accurate. A number of the stochastic 

processes underlying these option pricing models are mean reverting, which is consistent with 

my results.  

Mencía and Sentana (2013) show the validity of a number of VIX option pricing models 

by using VIX option and futures data. Because many of the models use a defined stochastic 

process, they show a number of ways that the time series of VIX can be modeled. Many of their 

models assume that the underlying series is stationary without a unit root; this is consistent with 

my findings. My model of the VIX differs from theirs because instead of looking at the 

nonlinearity present in the VIX data as long-run mean reversion to a changing long-run mean, I 

use a threshold autoregressive setup. This allows me to model the VIX in several 

characteristically different regions.  

My research is set apart in several ways. Although a number of previous papers have 

found evidence of nonlinear and threshold effects, I extend this approach to smooth transition 

models. I also allow each of my series to have an independent smooth-transition autoregressive 

(STAR) form, and I further show that this setup is statistically significant in pretesting. 



 

72 

 

Additionally, much of the previous literature has focused on our ability to predict future stock 

market volatility. I look at predicting the VIX or future implied volatility. This is the cost of 

purchasing options and is more applicable for risk managers as they consider the expected future 

cost of short-term asymmetric hedging strategies.  

 

3.3. Methodology 

The historical VIX and VXO data is readily available online through the CBOEôs 

website. I use daily closing prices to develop my testable dataset. The underlying for the VIX is 

the S&P 500; the underlying for the older VXO is the S&P 100. Daily closing prices for these 

two indices are readily available from a number of sources, and I pull them online from Yahoo! 

Finance. Although the data is easy to get, there are some important sampling issues. In order to 

model the influence of realized volatility on VIX, I use the realized volatility of the matching 

forward-looking time period. The VIX is the square root of the fixed leg of a par variance swap 

over the next 30 days as implied by a number of options assuming a term structure of volatility.  

In order to appropriately match the realized volatility to the VIX, I take the VIX closing 

price and label it VIX(t). Starting the next day, I calculate the realized return volatility using 

closing prices going forward 30 calendar days. I label this RV(t). I then take the closing VIX on 

the last trading day used in the realized volatility calculation and label this VIX(t+1). The next 

trading dayôs closing price is the first used in the calculation of RV(t+1). Since VIX is forward 

looking, there is not an overlap in using the closing price and VIX measurement from the same 

day. It is important to space out samples of the VIX to match my measure of realized volatility. 
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Even though the VIX has daily meaningful observations, the realized volatility measure does 

not12.  

The sample statistics are shown below. The mean and median of the volatility indices are 

consistently higher than the realized volatility that they are designed to forecast, which is noted 

by Andersen and Bondarenko (2007). The ranges of the volatility indices are smaller than their 

corresponding realized volatility figures. This follows my observation that at the extremes, the 

lagged VIX has little influence in forecasting itself. Correspondingly, the standard deviation for 

the realized volatility measures is consistently higher for the volatility indices (this would be a 

fourth order statistic in relation to stock returns). Each time series is positively skewed which 

could be explained by each series being unbounded above. The series also show high levels of 

excess kurtosis which is consistent with having a large number of small movements punctuated 

by a few large movements.  

The rejection of the Jarque-Bera statistic is similar to other financial datasets. A 

decomposition of this measure (not shown) demonstrates that this rejection is not exclusively due 

to just the skewness or kurtosis. Both statistics drive this measure to the rejection level. This also 

gives further evidence for the Grünbichler and Longstaff (1996) derivatives pricing models 

which use the CIR model for the stochastic process of VIX. The autocorrelations are low for 

financial price data, and I test for the presence of a unit root as a robustness test. The cross 

correlations indicate that these measures of volatility are not identical in their information 

content.  

                                                 

12 Daily rolling windows would introduce tremendous false serial correlation because each day 

one observation would change in my rolling sample at a time. This would be further exacerbated 

by the presence of weekends.  
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The main hypothesis is that there are significant smooth threshold autoregressive effects 

in the VIX and its related series. I begin by testing each series for stationarity using ADF tests 

and Enders-Granger unit root tests to allow for asymmetric adjustment. I show that the model 

specification for forecasting the VIX depends in large part on recent realized volatility and 

lagged VIX. I test, initially, with a ñsharpò threshold autoregressive test. Given the significance I 

find, I use Terªsvirtaôs (1994) test for delineating between an ESTAR and LSTAR models. 

These pretests lay the foundation for the following model:   

ὠὍὢ ὠὍὢ Ễ ὠὍὢ Ὑὠ Ễ Ὑὠ

ὫὠὍὢ ὦ ὦὠὍὢ Ễ ὦὠὍὢ ὥὙὠ Ễ ὥὙὠ ‐ 

where, 

π ὫὠὍὢ ρ 

The coefficients, Ŭi, ɓi, ai, and bi are the coefficients estimated for the VIX. In the above equation 

AR(p) models are present for the lagged VIX and lagged realized volatility, RV. The coefficients 

are jointly estimated in each regime. Here g(VIXt-d) is the transition function, and d is the delay 

parameter. I define the transition function in one of the following ways:   

For an LSTAR model,  

Ὣ ὠὍὢ ρ ÅØÐὠὍὢ ὧ  

For an ESTAR model,  

Ὣ ὠὍὢ ρ ÅØÐὠὍὢ ὧ  

Here ɔ is a measure of how fast the transition function moves between 0 and 1. The estimated 

coefficient c is the center of the transition region. Introspection shows that even if the most 

recent 30 day realized volatility is 0, the forward-looking market-driven VIX would certainly not 

be 0. I also propose that the information contained in the VIX and recent RV depends on the 
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previous observations of the VIX and RV in the sense that the AR equationôs coefficients depend 

on the previous observations of the VIX and RV. Congruous with this observation, I find that the 

level of mean reversion for the VIX is regime dependent.  

 

3.4. Empirical Findings 

A number of previous papers have wrestled with the question of whether or not the time 

series of VIX and realized volatility are stationary (Wang and Daigler, 2009). I use stationary as 

oppose to trend stationary because there should not be any persistent long-term trends in either of 

these terms13. Ang et al. (2006) argue that although the similar VXO series has high 

autocorrelation, it is likely to be stationary. Adhikari and Hilliard (2014) find that the VIX time 

series is not stationary in levels, but their datasetôs last several observations include the 

beginning of the recent financial crisis. It is certainly not the case that the time series behavior of 

the VIX is non-stationary in levels. This would mean that since the series is bounded from 

below, we should expect it to trend on towards positive infinity. In the same way, I expect 

realized volatility to be stationary. In order to have cohesive test conclusions later on (that are 

based on levels), it is important to show that the underlying series are stationary, but there is 

another contravening factor that clouds this type of testing.  

The core hypothesis of this paper is the presence of nonlinear effects in levels. 

Nonlinearity reduces the power of unit-root tests in the same way as structural breaks14. In order 

                                                 

13 Although the VIX is related to other economic variables that display a trend, a long term trend 

would push the series either to 0 or Ð. Neither of these is viable given the underlying meaning of 

the VIX.  
14 Structural breaks are actually a special case of the threshold autoregressive model where time 

is the threshold variable. The TAR model is itself a special case of smooth-transition threshold 

autoregressive models.  
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to test for the presence of a unit-root, I begin with Augmented Dickey-Fuller, ADF, testing. 

Since there are several large spikes in the later part of the time series, I allow for the presence of 

deterministic trend terms and follow Dolado et al. (1990) to eliminate each drift term. The results 

in Table 3.2 show that there is a significant constant drift term in each series, but in each case I 

reject the null hypothesis of a unit-root. The large spikes in the second half of the dataset are 

likely the cause of the significant trend term. I follow a general-to-specific methodology by 

starting with 12 lags in each case, which is approximately one year of previous observations. 

Since I show later that there are significant nonlinearity effects in the model, this is a stronger 

result than necessary. In order to further see if nonlinearity is present in the series, I test for a unit 

root in the presence of asymmetric adjustment.  

Enders and Granger (1998) present an approach to unit root testing in the presence of 

asymmetric adjustment. They show this in the context of threshold and momentum threshold 

models, and I test under each structure. The threshold model uses a lagged observation of the 

variable of interest; the momentum threshold model uses a lagged first difference. As the 

attractor, they use zero, a constant, or a linear trend term. Since the realized volatility (and 

correspondingly, VIX) is bounded from below at zero, I test only with the constant and linear 

trend setups. The results for these tests are shown in Table 3.3. With the TAR model and a 

constant attractor, the S&P 500 realized volatility is significant at the 5% level. In all other cases 

I reject the presence of a unit root at a greater than 1% level. Kɘlɘּ(2011) פ puts forward a unit-

root test in the presence of an ESTAR model. For an ESTAR model, a unit root in the internal 

portion of the model is acceptable as long as it is mean-reverting in the outer region. In order to 

test the outer region, Kɘlɘּפ puts forward the following model:   

Ўώ Ўώ ‰ώ ρ ÅØÐᾀ  ό 
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Here, y represents the demeaned, detrended VIX. Starting at p = 12, I select p based on the BIC.  

The variable ʟ  is the unit-root test coefficient. ɔ is the rate of conversion from one regime to 

another. zt is set to ȹyt-d. The delay parameter, d, is found using the smallest RSS. The results are 

shown in Table 3.4. Similar to each of the other unit-root tests done so far, I strongly reject the 

presence of a unit root. This is consistent with previous models that have assumed a stationary 

model of the VIX and volatility (see Whaleyôs, 1993, critique of his own model).  

The Enders-Granger test also gives other useful statistics for characterizing the behavior 

of the data. Once the presence of a unit root has been rejected, the equality statistic can be used 

to test whether the adjustment is symmetrical. Here I find mixed results. Based on the RSS the 

TAR model is a better fit for the VIX series; because under the TAR model, the VIX adjustment 

terms are significantly different. This means that there may be a region where the VIX is much 

closer to a unit-root relative to the other region. For the RV series, the momentum threshold 

model gives a lower RSS. Here again the adjustment terms are significantly different from each 

other indicating regional differences. Since I have found that there is evidence of threshold 

effects, I move next to a set of pretests for threshold models.  

I begin the identification of the nonlinearity by pretesting for threshold behavior using a 

test that assumes an abrupt break between regimes based on a lagged term. I select an AR(p) 

model by using the AIC and BIC. The best fit for the VIX is an AR(2) model, and the best fit for 

the realized volatility series is an AR(1). Since I am moving towards a VAR model, I use an 

AR(2) model in both cases for the threshold testing. In each case, p-values are generated from 

1000 random draws. I also test each variable using the other variable as the threshold variable, 

and I run the tests under the momentum threshold setup as well. The threshold testing in Table 



 

78 

 

3.5 shows a number of significant results. Since threshold effects are present, I move, next, to a 

pretest that includes a broader range of threshold behaviors.  

Teräsvirta (1994) develops a model that allows for testing between an LSTAR and an 

ESTAR model. This test involves using the higher-order Taylor-Series coefficients and testing 

several conditional hypotheses about these statistics. The preliminary test uses a null hypothesis 

of linearity. As shown in Table 3.6, I reject linearity in several instances. Since financial markets 

quickly incorporate information, I expect the delay parameter to be small for my STAR model. 

For d equal to 1 or 2, I strongly reject the null hypothesis of a linear model. Once linearity is 

rejected, the general rule for picking between an LSTAR and ESTAR model is to see whether 

the rejection of H02 is stronger than the rejection of H01 or H03. When true, the ESTAR is 

likely to be the best fit. An ESTAR model will also likely reject H12.  This is precisely the 

pattern given by the results for d=2. Unfortunately, the reliability of these tests is reduced by the 

presence of data asymmetry. There are also several configurations where the LSTAR model is 

approximated by part of an ESTAR model. To compare these models, I begin the estimation 

process.  

The data in Figure 3.2 shows signs of an ESTAR model visually and through testing. 

Visually, there seems to be a greater disconnect between the VIX and RV when realized 

volatility is very low or very high. I develop an ESTAR model and begin with lag length tests. 

With an ESTAR model, there are two regions. One region is found where the transition function, 

g, is zero (coefficients labeled 1). The other region is where the lagged VIX is far from the 

threshold (the sum of coefficients 1 and 2). Between these regions the model smoothly 

transitions from one to the other. Using log-likelihood tests I fail to reject the null hypothesis that 

the third lag variables are zero. In order to select the correct delay parameter for the regime 



 

79 

 

switching, I use the lag length found earlier and vary the delay parameter. A delay parameter of 2 

gave the lowest RSS. Once the delay parameter was selected, I recalculated the lag length tests to 

get the lag length of 2. Iterating between each of these selection criteria gave a consistent model 

of 2 lags with a delay parameter of 2, which is shown below. The regression results in Table 3.7 

show starkly different characteristics for each region. Because I use a nonlinear model, the 

statistical significance shown cannot be directly used for hypothesis testing, but the relative 

magnitudes of the t-statistics do communicate something about the nature of the underlying 

variables. Normally, one would expect the most recent observation to contain the most 

information, but the VIX contains a number of significant, short-lived spikes. When VIXt is a 

spike, both of the last two VIX observations fit poorly. When VIXt-1 is a spike, it is not as 

informative as VIXt-2. Using a delay parameter of 2, meaning VIXt-2 is used in the transition 

function, fits better because it solves this spiking issue. I, next, remove different parts from the 

above model to see whether both series are statistically significant.   

The most recent VIX and most recent RV both contain a lot of overlapping information 

which can be seen in simple linear models. Within the ESTAR model that I develop, I remove all 

the lags of each series to see if they are altogether statistically significant. I use likelihood ratio 

tests which can be seen in Panel B of Table 3.7. I first exclude all the lags of RV. If it is not 

valuable in forecasting the VIX, then I should fail to reject the null hypothesis that these 

coefficients are zero. This is also a test of Granger Causality because a failure to reject would 

mean that the lags of RV are not significantly useful in forecasting the VIX. I strongly reject the 

null hypothesis meaning that the RV Granger Causes (or is useful in forecasting) the VIX. 

Second, I exclude all of the lags of the VIX from the model. If a dominant amount of the useful 

forecasting information is included in the RV and the VIX is not incrementally useful, then I 
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would expect to fail to reject for the VIX exclusion. I find the opposite and strongly reject that 

the VIX terms are jointly not useful in forecasting. Typically, a general-to-specific method is 

common practice for time series models, but in Table 3.7 there are a number of lags that seem to 

be insignificant (once again the t-stats are not informative in nonlinear models). In order to 

examine the significance of these lags further, I use log-likelihood tests to check each of the 

second lags individually. I start with a single lag of each variable in each region. I then add a 

single additional lag in each region and test this additional variable for significance. The results 

are shown in Panel A of Table 3.8.  

On the one hand, the results of the log-likelihood tests fail to reject that the additional lag 

of realized volatility lag is zero. On the other hand, the tests strongly reject that the coefficients 

on the additional lags of the VIX are zero. To further avoid over-fitting my model, I also 

calculate the AIC and BIC for a number of different lag configurations which are shown in Panel 

B of the aforementioned table. Although the log-likelihood tests indicate using two lags in each 

region for the VIX and a single lag in each region for the RV, the AIC and BIC both select a 

single lag for each variable in each region except for in region 2 for the VIX. Having selected a 

more parsimonious model, I next move to estimation.  

The previous tests have led to an ESTAR model that uses a single lag of the realized 

volatility and 1 or 2 lags of the VIX depending on the region. In the region very close to the 

threshold variable, I use a single lag of the VIX. I region 2, when the threshold variable is far 

from the threshold variable, I use two lags of the VIX. The estimated model is shown in Table 

3.9. Interestingly, the previous periodôs RV is incorporated on a nearly one-to-one basis near to 

the threshold value. Hence, in normal markets near the historical average, the VIX incorporates 

almost all of the previous periodôs realized volatility. As the threshold variable moves further 
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from this normal rage, a much smaller amount of the previous periodôs realized volatility is 

incorporated into the VIX. When volatilities are very high or very low, the VIX depends less on 

RV. This is further explored in the modelôs long-run means.  

Since the models coefficients depend on the threshold variable, I use the average of 

realized volatility and the modelôs regional coefficients to develop a table of coefficients and 

long-run means. The modelôs long-run means are dependent on the threshold variable. This 

pattern is shown in Figure 3.3. The results are also shown in Table 3.9. 

The presence of ESTAR regions shows starkly different behaviors in each region. Near 

the threshold value, the previous RV is almost entirely incorporated, but the previous lags of the 

VIX have a very small influence on the one-step ahead forecasts. In the fringe region (at very 

low or very high levels) a little over one third of the previous realized volatility is incorporated in 

the VIX. This is a much smaller amount than in the middle region. In this fringe region, the VIX 

also displays more persistence. This is consistent with the greater disconnect observed in the 

fringe regions. Even if RV were to be nearly zero for several days, the VIX would remain higher. 

This similar disconnect is observed when RV is spiking. Although the VIX is almost always 

higher than RV, traders know that a large spike will quickly revert to normal levels.  

There is an argument that suggests interest rates must be stationary because over the past 

century they have been fairly similar to what they were in some of the most ancient cultures 

(Cochrane, 1991). With time series modeling, each model implies a long-run mean (or lack of 

one). Thus, similarly, I use the average of realized volatility and the ESTAR model to look at 

how the long-run mean varies with the threshold value. The results below show that the series is 

generally reverting towards a value of 13.5, but when the previous VIX observation is close to 

18, this long-run reversion point increases. This also shows that the behavior of the VIX in each 
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extreme is fairly similar. Near the median, the forecasted VIX depends primarily on previous 

RV, but in the extremes, the most recent value of the VIX has a greater impact on the one-step 

ahead forecast. In these extremes, the previous RV has a smaller influence on the VIX. These 

dynamics are consistent with previous literature that has said that indices like the VIX hold some 

information that recent realized volatility does not.  

The VIX and RV time series are based on the second order moments of returns. In order 

to further characterize these series, I also pretested for the GARCH behaviors in these series. 

Since this would be the standard deviation of a standard deviation, this is a fourth order 

characteristic. In results not shown, I find GARCH effects similar to almost any other financial 

variable. These fourth-order effects generally lower the power of tests in levels, but since my 

tests still found significant effects I did not build the GARCH effects into my model.  

 

3.5. Implications 

There has been an extraordinary amount of capital invested into volatility tracking 

indices. The presence of volatility speculation gives a unique window into how individuals view 

volatility. Previous literature has found that the information contained in a volatility index is 

likely not the same as the information contained in the most recent monthôs realized volatility. I 

show that in addition to the above effects, there are also marked differences that depend on the 

region in which the recent VIX levels have occurred. This is important for anyone in the options 

market and particularly important for those who are using or forecasting implied volatilities for 

value-at-risk studies.  

Financial firms direct a significant amount of resources to various risk management 

measures. The implications of my findings are that using the VIX or realized volatility alone is 
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not sufficient for forecasting future volatility levels. Even using both these series is not sufficient 

because they contain threshold effects; hence, in some regions only one of the above volatility 

indicators is useful. Although the VIX is designed to be forward looking, a large portion of its 

information is contained in the previous periodôs realized volatility. Risk managers must use all 

of the information contained in these series in order to accurately forecast volatility.  

 

3.6. Conclusions 

I have shown that the VIX is not only distributed asymmetrically, it also has nonlinear 

threshold effects. In contrast to many previous studies, I have shown that the VIX is stationary 

which is consistent with our theoretical understanding of the statistical moments of financial 

data. The level of mean-reversion and, correspondingly, the ability to reject a unit-root process is 

asymmetric in Enders-Granger tests. This indicates the presence of a nonlinear data generating 

process. I pretest for both threshold and smooth threshold autoregressive effects and find 

significant evidence for both. Using Terªsvirtaôs (1994) pretest for picking a LSTAR or ESTAR 

model, testing suggests an ESTAR model is a better fit. Harmoniously, I estimate an ESTAR 

model that confirms my suspicions that there are economically and statistically significant 

smooth threshold effects in the time series of the VIX. These findings are important for a number 

of reasons. It can be argued that the VIX captures more about market psychology than recent 

realized volatility. My model indicates that when recent VIX levels are far from their threshold 

value the most recent VIX and RV observations have some level of influence on the predicted 

next observation. Close to the threshold value, the VIX is not very influential for forecasting and 

most of the next VIX comes from the recent RV. Throughout both regions the RV plays an 

important part in predicting the VIX, but this influence is much smaller at the extremes. Standard 
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industry practice is to use some weighted average of implied volatilities for model calibration. 

However, this approach ignores non-linear and regime switching possibilities which are clearly 

present in these time series. Risk managers must take into account these effects when building 

their term structure of volatility for pricing and forecasting.   
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Table 3.1: Summary statistics  

Shown below are summary statistics for a several sampling schemes for the volatility indices. 

The day count convention can be done either by 30 calendar days or 21 trading days. 

  

 

 

 

VIX 

Act. 

S&P 

500 

Act. 

Realize

d 

VIX 21 

Day 

S&P 

500 21 

Day 

Realize

d 

VXO 

Act. 

S&P 

100 

Act. 

Realize

d 

VXO 

21 

Day 

S&P 

100 21 

Day 

Realize

d 

Observations 315 315 290 290 368 368 339 339 

Mean 19.888 15.728 20.006 15.781 20.985 16.221 20.420 17.114 

Median 17.790 13.467 18.385 13.040 19.170 13.932 19.230 13.872 

Maximum 69.950 82.860 80.860 80.253 85.990 107.147 79.360 103.836 

Minimum 9.480 4.673 9.310 5.053 9.040 4.511 9.190 4.536 

Std. Dev. 8.038 9.499 8.416 9.468 8.932 10.215 8.807 10.214 

Skewness 2.114 3.011 2.670 2.834 2.266 3.822 2.204 3.718 

Kurtosis 7.550 13.162 13.162 12.508 9.721 24.086 8.809 22.629 

Jarque-Bera 

506.41

6 

1831.41

2 

1592.49

1 

1480.48

4 

1007.56

0 

7713.63

6 

751.20

0 

6223.15

0 

Probability 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Autocorrelati

on 0.801 0.735 0.820 0.734 0.780 0.594 0.803 0.584 

Cross-Correlation 0.794 

 

0.779 

 

0.704 

 

0.682 

 

 

  



 

89 

 

Table 3.2: Augmented Dickey-Fuller t est 

Shown below are the results for the ADF test. Here I start with 12 lags, which is approximately 

one year of data. I follow Dolado et al. (1990) to eliminate the influence of possible drift terms. 

  

 

VIX Act.  S&P 500 Act. Realized 

Lag -0.176 -0.259 

t-stat -4.866 -6.114 

Drift Terms C, T C, T 

Sig. Drift Terms C C 

No. of Lags 1 1 
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Table 3.3: Enders-Granger unit root t est 

Shown below are the results from the Enders-Granger unit root test with asymmetric adjustment. 

The ű-statistic is the test statistic for the presence of a unit root. The critical values are also 

shown.   

 

TAR Model 

     Enders-Granger (No Attractor Drift) 

 

Enders-Granger (Constant Drift) 

 

VIX Act.  SP 500 Act. Realized 

 

VIX Act.  SP 500 Act. Realized 

Attractor 25.40 13.84 

 

Attractor 20.14 11.21 

    

Trend 0.02 0.02 

T-Max -1.81 -2.29 

 

T-Max -1.96 -2.60 

Above Lag -0.29 -0.14 

 

Above Lag -0.28 -0.17 

Below Lag -0.06 -0.27 

 

Below Lag -0.07 -0.31 

ű-Statistic  13.24 5.12 

 

ű-Statistic  14.01 6.95 

Equality 11.94 1.14 

 

Equality 9.52 1.36 

No. of Lags 1 10 

 

No. of Lags 1 7 

Best RSS 7020.7 12216.4 

 

Best RSS 6988.6 12446.6 

MTAR Model 

     Enders-Granger (No Attractor Drift) 

 

Enders-Granger (Constant Drift) 

 

VIX Act.  SP500 Act. Realized 

 

VIX Act.  SP500 Act. Realized 

Attractor 19.59 14.44 

 

Attractor 17.04 11.65 

    

Trend 0.02 0.02 

T-Max -2.8622 -0.8003 

 

T-Max -2.97 -1.05 

Above Lag -0.148 -0.051 

 

Above Lag -0.16 -0.07 

Below Lag -0.191 -0.321 

 

Below Lag -0.20 -0.34 

ű*-Statistic  11.531 10.812 

 

ű*-Statistic  12.04 11.39 

Equality 0.298 9.246 

 

Equality 0.30 9.34 

No. of Lags 1 7 

 

No. of Lags 1 7 

Best RSS 7092.7 12146.1 

 

Best RSS 7070.9 12102.0 

 

 

Estimated Constant Attractor 

 

ű-Statistic (Unit-Root Test) 

 

ű*-Statistic (Unit-Root Test) 

 

90% 95% 99% 

 

90% 95% 99% 

250 3.74 4.56 6.47 

 

4.05 4.95 6.99 

1000 3.74 4.56 6.41 

 

4.05 4.95 6.91 

 

Estimated Trend Attractor 

 

ű-Statistic (Unit-Root Test) 

 

ű*-Statistic (Unit-Root Test) 

 

90% 95% 99% 

 

90% 95% 99% 

250 5.18 6.12 8.23 

 

5.64 6.65 8.85 

1000 5.15 6.08 8.12 

 

5.60 6.57 8.74 
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Table 3.4: ESTAR unit root tests 

The results for a unit root test with a possible ESTAR model. This methodology is based on Kɘlɘּפ 

(2011) and can be represented as shown below:  

Ўώ Ўώ ‰ώ ρ ÅØÐᾀ  ό 

The y represents the demeaned, detrended variable of interest. I start with 12 lags. The number of 

lags, p, is selected using the BIC.  The variable  ʟis the unit-root test coefficient. ɔ is the rate of 

conversion from one regime to another. zt is set to ȹyt-4 consistent with Kɘlɘּפ. 

  

 

VIX Act.  

 

Asymptotic Critical Values 

◖-Statistic -0.264 

 

1% -3.19 

t-Statistic -3.922 

 

5% -2.57 

ɔ  0.115 

 

10% -2.23 

t-stat 1.127 

   Delay Par. 4 

   No. of Lags 1 
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Table 3.5: Threshold testing 

The below is a pretest of threshold autoregressive behavior. The underlying linear model is an 

AR(2). The p-value is bootstrapped from 1000 random samples. 

  

TAR Model 

   Dep. Var.  Thresh. Var. Delay Threshold P-Value 

VIX  VIX  1 25.750 0.101 

VIX  VIX  2 25.040 0.007 

VIX  VIX  3 17.820 0.112 

SP 500 SP 500 1 18.804 0.158 

SP 500 SP 500 2 21.337 0.007 

SP 500 SP 500 3 18.083 0.006 

MTAR Model 

   Dep. Var.  Thresh. Var. Delay Threshold P-Value 

VIX  ȹVIX 1 2.940 0.710 

VIX  ȹVIX 2 -2.110 0.086 

VIX  ȹVIX 3 1.310 0.987 

SP 500 ȹSP 500 1 -3.944 0.000 

SP 500 ȹSP 500 2 6.525 0.007 

SP 500 ȹSP 500 3 6.272 0.007 

TAR Model 

   Dep. Var.  Thresh. Var. Delay Threshold P-Value 

VIX  SP 500 1 22.444 0.000 

VIX  SP 500 2 21.337 0.347 

VIX  SP 500 3 12.170 0.250 

SP 500 VIX  1 25.660 0.001 

SP 500 VIX  2 20.740 0.001 

SP 500 VIX  3 24.150 0.000 

MTAR Model 

   Dep. Var.  Thresh. Var. Delay Threshold P-Value 

VIX  ȹSP 500 1 5.195 0.000 

VIX  ȹSP 500 2 -3.884 0.200 

VIX  ȹSP 500 3 2.164 0.843 

SP 500 ȹVIX 1 2.620 0.007 

SP 500 ȹVIX 2 -3.460 0.021 

SP 500 ȹVIX 3 5.468 0.012 
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Table 3.6: Threshold testing 

The following table shows the results from Terªsvirtaôs (1994) test for choosing between 

LSTAR and ESTAR models. The assumed linear model is an AR(2). The last four columns are 

the various tests for choosing between an LSTAR and ESTAR models. The F-tests and 

corresponding p-values (in parentheses) are shown for each null hypothesis. For example, with a 

delay term set to 1, the F-statistic is 2.468 which has a p-value of 0.024.  

 

Delay  Linearity H01 H02 H03 H12 

1 2.468 0.709 0.985 5.660 0.847 

 

(0.024) (0.493) (0.375) (0.004) (0.496) 

2 3.293 2.298 7.484 0.061 4.940 

 

(0.004) (0.102) (0.001) (0.941) (0.001) 

3 1.602 1.438 2.854 0.511 2.155 

 

(0.146) (0.239) (0.059) (0.601) (0.074) 

4 1.646 0.374 1.555 2.982 0.965 

 

(0.134) (0.689) (0.213) (0.052) (0.427) 

5 1.942 0.785 1.736 3.262 1.262 

 

(0.074) (0.457) (0.178) (0.040) (0.285) 

6 1.689 0.313 0.969 3.761 0.641 

 

(0.123) (0.731) (0.381) (0.024) (0.634) 
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Table 3.7: Initial ESTAR m odel 

Panel A of the table below shows the results of my ESTAR model of the VIX index. The 

threshold variable is the second lagged level of the VIX. The coefficients in each region are 

labeled 1 or 2. Region 1 is the region far from the threshold value. Gamma, ɔ, is a measure of the 

change between states, and c is the threshold value (at c you take the sum of each regionôs 

coefficients to get the forecast equation). Panel B excludes either the VIX or the RV terms from 

the above equation using a likelihood ratio test. The estimated equation is as follows:   

 

ὠὍὢ ὠὍὢ ὠὍὢ Ὑὠ Ὑὠ
ὫὠὍὢ ὦ ὦὠὍὢ ὦὠὍὢ ὥὙὠ ὥὙὠ ‐ 

 

where,    Ὣ ὠὍὢ ρ ÅØÐὠὍὢ ὧ  

 

Panel A: ESTAR model 

 

Region Variable Coeff Std Error T-Stat Signif 

1 Constant 11.788 8.270 1.425 0.155 

1 VIX (t-1) 0.097 0.145 0.669 0.504 

1 VIX (t-2) -0.426 0.465 -0.916 0.361 

1 RV(t-1) 0.957 0.083 11.468 0.000 

1 RV(t-2) 0.014 0.123 0.114 0.910 

2 Constant -7.866 8.349 -0.942 0.347 

2 VIX (t-1) 0.100 0.172 0.579 0.563 

2 VIX (t-2) 0.719 0.471 1.527 0.128 

2 RV(t-1) -0.556 0.092 -6.045 0.000 

2 RV(t-2) -0.053 0.139 -0.379 0.705 

 

ɔ 0.189 0.072 2.610 0.010 

 

c 18.722 0.292 64.078 0.000 
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Panel B: Excluding each series 

 

Variable Log Determinates ɢ2(n) n Signif 

RV 2.256 3.049 238.732 4 0.000 

VIX  2.256 2.497 72.712 4 0.000 
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Table 3.8: Comparison of similar ESTAR models 

Panel A shows log-likelihood tests that compare a model with a single lag on each variable in 

each region with a model that includes the second lag of a single variable in a single region. 

Panel B of the table below shows the AIC and BIC of a number of similar models. Region 1 is 

the region near the threshold value. Region 2 is the region far from the threshold value. The 

heading ñLags 2/1ò means that there are two lags of this variable in Region 1 and a single lag of 

this variable in Region 2. Included at the bottom are the AIC and BIC for a simple AR(1) model 

and an AR(1) that includes the realized volatility term.  

 

Panel A: Log-likelihood tests for 2nd lags 

 

Dropped Variable Log Determinates ɢ2(n) n Signif 

RV (R1) 2.377 2.381 1.284 1 0.257 

RV (R2) 2.377 2.381 1.293 1 0.255 

VIX (R1) 2.262 2.381 36.290 1 0.000 

VIX (R2) 2.259 2.381 37.221 1 0.000 
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Panel B: AIC/BIC comparison 

 

    

Region1/Region2 

   

  

VIX \RV 

 

Lags 0/0 Lags 1/1 Lags 1/2 Lags 2/1 Lags 2/2 

Region1/Region2 Lags 0/0 AIC= 

    

2596 

   

BIC= 

    

2626 

  

Lags 1/1 AIC= 

 

2560 2560 2560 

 

   

BIC= 

 

2590 2594 2594 

 

  

Lags 1/2 AIC= 

 

2523 

   

   

BIC= 

 

2557 

   

  

Lags 2/1 AIC= 

 

2524 

   

   

BIC= 

 

2558 

   

  

Lags 2/2 AIC= 2769 2525 

  

2529 

   

BIC= 2799 2563 

  

2574 

  

AR(1) AIC= 2796 

 

AR(1)X AIC= 2615 

   

BIC= 2803 

  

BIC= 2626 
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Table 3.9: ESTAR Model 

The table below shows the results of my ESTAR model of the VIX index. The threshold variable 

is the second lagged level of the VIX. The coefficients in each region are labeled 1 or 2. Region 

1 is the region far from the threshold value. Gamma, ɔ, is a measure of the change between 

states, and c is the threshold value (at c you take the sum of each regionôs coefficients to get the 

forecast equation). The estimated equation is as follows:   

 

ὠὍὢ ὠὍὢ Ὑὠ ὫὠὍὢ ὦ ὦὠὍὢ ὦὠὍὢ ὥὙὠ ‐ 
 

where,    Ὣ ὠὍὢ ρ ÅØÐὠὍὢ ὧ  

 

Region Variable Coeff Std Error T-Stat Signif 

1 Constant 4.956 1.678 2.953 0.003 

1 VIX (t-1) 0.061 0.102 0.599 0.550 

1 RV(t-1) 0.941 0.076 12.330 0.000 

2 Constant -0.925 1.876 -0.493 0.622 

2 VIX (t-1) 0.137 0.132 1.034 0.302 

2 VIX (t-2) 0.276 0.044 6.342 0.000 

2 RV(t-1) -0.569 0.088 -6.504 0.000 

 

ɔ 0.134 0.048 2.775 0.006 

 

c 18.562 0.293 63.330 0.000 
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Table 3.10: Regional long-run means 

The table below shows how the LR mean varies based on the threshold values distance from its 

attractor. The threshold value is the second lagged level of the VIX. The threshold function, g, 

varies from 0 to 1 based on the ESTAR model. In order to incorporate the effects of RV, the 

average is included in the equation for LR mean. The results are unchanged for a threshold value 

greater than 30, so those rows are not included. The dependent variable is the VIX.  

 

Thresh g Constant VIX (t-1) VIX (t-2) RV(t-1) LR Mean 

5 1.000 4.031 0.197 0.276 0.371 13.501 

10 1.000 4.031 0.197 0.276 0.371 13.501 

15 0.817 4.200 0.172 0.226 0.475 14.458 

20 0.242 4.732 0.094 0.067 0.803 18.268 

25 0.996 4.034 0.197 0.275 0.374 13.519 

30 1.000 4.031 0.197 0.276 0.371 13.501 

35 1.000 4.031 0.197 0.276 0.371 13.501 
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Figure 3.1:  Day count methods 

The illustration below shows the two common day count conventions used in VIX research. I use 

the first one because it allows the number of trading days to fluctuate as they naturally do over 

the lives of short-term options.  
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Figure 3.2:  VIX and RV over time 

The illustration below shows the VIX and RV under the 30 calendar day counting method. The 

horizontal axis shows the magnitude. The RV is adjusted by the square root of the number of 

days in a year to match the magnitude of the VIX.  
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Figure 3.3:  Model long-run mean of the VIX  

The illustration below show the point to which the VIX mean-reverts based on the transition 

function and the delayed VIX level. The numbers are also illustrated in Table 3.10.  
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CHAPTER 4: PERFORMATIVITY -FREE OPTION PRICING MODEL RANKING 

4.1. Introduction 

Option pricing has developed an enormous literature over the past 50 years. One major 

issue in derivatives pricing literature is that of performativity. Merriam-Websterôs Dictionary 

defines performativity as follows:  ñbeing or relating to an expression that serves to effect a 

transaction or that constitutes the performance of the specified act by virtue of its utterance.ò As 

models better capture the many eccentricities of financial markets, market prices tend to fit 

models better. For example, when the Black-Scholes-Merton option pricing model first became 

widely adopted by the market, it fit quite well because it was the model most traders used. If a 

new model does actually fit the underlying better, empirical tests will be unlikely to agree 

because the market itself is not using the new model. Since most OPMs have some form of 

volatility term, the option price and the forward looking volatility are jointly unknown. Neither 

can be directly computed without the other. To work around this issue, I propose a methodology 

for ranking OPMs. A large number of OPMs use the normal distribution in some form because it 

is tractable. OPMs also assume a specific stochastic process for the underlying. This 

methodology is appropriate for OPMs that use some form of normal distribution and assume a 

stochastic process for the underlying.  

This chapter is organized as follows. Section 4.2 discusses the relevant literature. In 

section 4.3, I introduce the three OPMs used in this paper and explain my new ranking 
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methodology. Section 3.4 gives the data sources. Section 4.5 discusses my empirical findings, 

and section 4.6 presents the conclusions.  

 

4.2. Literature Review 

Our understanding of the nature of randomness predates almost all of modern science and 

mathematics. The Roman philosopher, Lucretius (60 BC), gives one of the first known 

descriptions of a mathematical process that has become known as Brownian motion. It is so 

named for Robert Brown (1872) who observed the random movement of pollen particles. 

Options trading has certainly been around for centuries. One of the first mathematically rigorous 

papers on option pricing is Bachelier (1900) who developed an option pricing model based on 

arithmetic Brownian motion, ABM. His line of inquiry lay dormant for decades until it was 

ñrediscoveredò by Paul Samuelson in the 1950s.  

Osborne (1959) did some of the earliest empirical work on the distributional 

characteristics of stock prices. He uses the first and third quartiles of the distribution of stock 

prices on a number of different days to establish the type of randomness in stock prices. He 

concludes that geometric Brownian motion is the best fit. There are several issues with his use of 

daily stock prices. There seems to be evidence that stock prices themselves are limited to a 

particular range. I avoid this issue by using an index. His paper was groundbreaking in that it 

expanded empirical testing methodologies to the stock market, but at the time there was some 

controversy as to his actual contribution. In that same journal, Osborne (1962) expands upon his 

initial approach by putting forward the log of the price relative as the best measure of the random 

walk of stock prices. Interestingly, he also mentions that the outliers indicate a power distribution 

with outliers playing a significant role in the overall process. Alexander (1961) also notes that 
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these ñfat-tailedò distributions are a significant characteristic of economic statistics. This is 

evidence against a normal distribution. Around this same time, there were a number of important 

innovations on the theoretical side of option pricing.  

Samuelson (1965) builds on several other earlier papers (including Sprenkleôs 1961 

paper) that have used arithmetic and geometric Brownian motion. He lays out a number of 

important boundary conditions for option pricing and even postulates that the direct equation for 

a call price will be based on the heat equation in an appendix for his paper done by 

mathematician Henry P. McKean, Jr. Concurrent with the aforementioned time period, Edward 

Thorp and Sheen Kassouf (1967) began arbitraging the boundary conditions of warrants based 

on their empirical observations. They both became wealthy and even published a book on their 

system of trading in 1967. Samuelson and Merton (1969) use a utility framework to develop a 

more generalized theory of warrant pricing. They also expand on the boundary conditions of 

Samuelsonôs previously mentioned paper. The reason that they resort to utility functions is that 

they must use a general equilibrium model for pricing the warrant. Up until this time, there was 

no profound agreement on the appropriate drift term or return on a particular stock, but there 

should not be one because each individualôs required rate of return is intrinsic to their risk 

preferences. This brings us to the remarkable innovations of Black, Scholes, and Merton.  

There were three papers that have put forward the most ubiquitous OPM of our time. The 

theoretical portion of the BSM OPM was put forward by Black and Scholes (1973). Sprenkleôs 

(1961) model of warrants looks very similar to the BSM model except for the fact that the stock 

price has an additional discount term k and the strike price is discounted by the term k*. Black 

and Scholes note that researchers have not found an empirical solution to these terms. Black and 

Scholes also borrow from Thorp and Kassouf who presented the idea of a hedge ratio. Using this 
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key observation, the heat transfer equation, and some difference equations they put forward their 

iconic model. The only difference between their model and Sprenkleôs is that k = 1 and k* is 

equal to the present value of $1 paid at expiration based on the risk-free rate. The big innovation 

is that one only needs to know the risk-free rate not the appropriate required rate of return on the 

stock. Merton (1973) expands on this model by simplifying it and re-deriving Black and Scholesô 

difference equations in continuous time. He shows a proof of a continually rebalanced portfolio 

and develops of the modelôs underlying partial differential equation. In an interesting turn of fate 

the empirical testing of the BSM model was published first.  

Black and Scholes (1972) collected data on 2,039 calls and 3,052 straddles. They tested 

their new modelôs option pricing ability by comparing dollar returns on a hedged portfolio. They 

also compare their model to market prices to see if trading on ñovervaluedò and ñundervaluedò 

contracts leads to positive returns. They define ñovervaluedò as the market price being greater 

than the model price. They do mention that if they trade based on their model, they lose a 

significant amount of money each day. At this time option markets had not yet accepted the 

BSM OPM15. The BSM OPM is based on geometric drift and geometric Brownian motion, 

GBM. Since BSM, numerous extensions to their models have been formulated and tested.  

As of the writing of this paper, SSRN lists over 2800 papers on option pricing. Much of 

the empirical work seeks to find models that more closely match observed option prices. Some of 

this has come in the form of allowing additional stochastic terms. Following many other 

empirical investigations, Bakshi, Cao, and Chen (1997) develop an option pricing model that 

uses stochastic volatility, stochastic interest rates, and stochastic jump processes. To test their 

                                                 

15 A more detailed history of the development of modern option pricing models can be found in 

Chance (1995). 
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proposed model, they use observed option prices and compare them to their new models in three 

ways:  parameter consistency with observed data, out-of-sample pricing, and hedging. 

Correspondingly, Carr and Wu (2004) propose a new framework for option pricing to address 

jumps, stochastic volatility, and the leverage effect. To incorporate the leverage effect, their 

modelôs Brownian motion is negatively correlated with the Brownian motion driving their jump 

process. In contrast to this approach, the ABM model address the leverage effect by assuming 

that volatility remains unchanged even as the stock price decreases. This leads to price relative 

volatilities that are negatively correlated with underlying returns.  

Corsi, Fusari, and Vecchia (2013) propose an OPM that uses a long-memory stochastic 

process in RV to proxy for unobserved option volatility. They test their model by using S&P 500 

index futures and options. By estimating a stochastic drift term based on implied volatility, they 

move their model closer to the standard normal distribution. Chambers, Foy, Liebner, and Lu 

(2014) compare option models by computing historical option strategy returns. They then 

compare these returns with returns derived from several well-known OPMs and show that for 

out-of-the-money put options there seems to be a substantial premium. Here again the 

methodology for comparing models uses option prices and underlying returns which introduces 

performativity issues. Fulop, Li, and Yu (2015) develop a self-exciting model of return volatility 

that includes Bayesian learning on the part of market participants. They use the S&P 500 index 

to measure the effectiveness of their model. They find evidence that a single jump is likely to be 

followed by other jumps as individuals adjust their beliefs about the underlying market. In 

addition to more general OPMs that focus on stock prices, several researchers have proposed 

particular models for certain underlyings.  
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The VIX is an index that measures overall market volatility by using the implied 

volatilities in the equity options market. A literature has developed that seeks to predict stock 

market volatility, and another literature looks at creating options on the VIX. Since it is often 

used as a hedging instrument, it seems natural that investors would want to buy options on the 

VIX. Wang and Daigler (2009) compare a number of different VIX option models. They find 

that although a number of more complex models exist for modelling the VIX, the simpler models 

perform better. They also mention some conversations with VIX options traders. These traders 

use a BSM-style model instead of the more sophisticated models available. Mencía and Sentana 

(2013) compare a number of different stochastic volatility models for the VIX. They use futures 

and options over a number of time periods surrounding the recent financial crisis. They note that 

there is a significant risk premium in the long-run volatility level. Their preferred model uses the 

log of the VIX and incorporates stochastic volatility and mean reversion. This model is similar to 

the CIR model tested below.  

OPMs generally use the current price of the underlying, a current risk-free rate, the time-

to-maturity, the strike price, and a volatility term, but there are some complicating issues when it 

comes to testing OPMs. The time to maturity and strike price are defined within the option 

contract. The current underlying price and the risk-free rate can be observed in the marketplace. 

The volatility is not and cannot be known with certainty. If the price is given, then volatility can 

be solved for, or if the volatility is assumed, an option price can be computed. In the empirical 

literature on option pricing, models are generally compared against the observed option prices. 

Here I present a new method for ranking OPMs that circumvents this problem by relying 

exclusively on the time series realizations of the underlying.  
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4.3. Methodology 

There are an ever increasing number of stochastic processes that are commonly used in 

option pricing. My goal is to simply compare several basic OPMs that are used for stock prices 

and the VIX. By discretizing these stochastic processes, I get a simple approach that can be used 

with almost any stochastic process. It turns out that discretization and numerical methods are 

being used more and more often. Chen, Härkönen, and Newton (2014) demonstrate the use of 

numerical integration to solve for a number of particularly intractable financial derivatives. To 

provide a background, I will begin by briefly covering the several simple call option models and 

their assumptions.  

4.3.1. Black-Scholes-Merton option pricing model 

The seminal papers of Black and Scholes (1973) and Merton (1973) put forward the 

classic option pricing formula that bears their name. Writing their model in a way that 

incorporates dividends, I get:   

ὅ Ὡ ὛὩ ὔὨ ὑὔὨ  

where 

Ὠ
ÌÎὛὩ ὑϳ „Ὕςϳ

„ЍὝ
 

Ὠ Ὠ „ЍὝ 

Here C is the call price, r is the risk-free rate, N(·) is the standard normal cumulative distribution 

function, q is the dividend yield, T is the time to maturity, S0 is the current stock price, K is the 

strike price, and ůg is the annualized volatility defined in percentage terms. This model uses a 

stochastic process of stock prices that can be written as follows:   

ὨὛ ‘ὛὨὸ„ὛὨᾀ 
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The stochastic process contains the volatility term and the drift term, ɛg. Here, the change in the 

stock price follows some drift which can incorporate a dividend yield. The Wiener Process, dz, is 

scaled by some relative volatility term and the current stock price. The distribution of the error 

terms follows a log-normal distribution. One assumption of this model is that the stock price can 

never be zero. Given limited liability, it follows that a stock price cannot be negative. However, 

each year there is a small, but significant portion of the stock market that becomes totally 

worthless through bankruptcy. The above model makes no allowance for this because under a 

log-normal distribution, the price can never be zero. The drift term also has some curious 

behavior.  

The drift term is usually remapped to the risk-neutral world through the Radon-Nikodym 

Derivative. Typically, the drift term is positive under the physical measure, but there are some 

cases where a negative term is more appropriate (like derivatives based on the VIX). I next look 

at a more recent model that is designed to be useful in the situations where the BSM OPM does 

not work well.   

4.3.2. Brooks-Brooks option pricing model 

The recent paper of Brooks and Brooks (2013) pairs the properties of geometric drift with 

arithmetic Brownian motion. Without geometric drift OPMs will be nonsensical because the drift 

should increase with the price. There are several simple ways to exploit a process that does not 

meet this process. Using the PDE, Brooks and Brooks find the following model for a call 

optionôs price under ABM:   

ὅ Ὡ ὛὩ ὑὔὨ „ὲὨ  

where 

Ὠ
ὛὩ ὑ

„
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The volatility term, ůa, is defined in absolute terms instead of percentage terms. Here the 

stochastic process for the model can be written as follows:   

ὨὛ ‘ὛὨὸ„Ὠᾀ 

The drift, ɛa, matches the previous BSM OPM, but will likely be different given the different 

properties of the noise term. It is also important to note that the drift term is in dollar units not in 

percentage units as in the BSM OPM. This model allows for a negative stock price, but the 

boundary conditions are no longer violated when you include a zero strike put to include the 

effects of limited liability.  

4.3.3. Cox-Ingersoll-Ross model 

The Cox-Ingersoll-Ross, CIR, model extends the Vasicek model by adding a volatility 

term that depends on the underlying variable. It was originally used to model interest rates, and 

Grünbichler and Longstaff (1996) use it to model the instantaneous behavior of the VIX. The 

stochastic differential equation can be written as follows:   

Ὠὠ  ὠὨὸ„ЍὠὨᾀ 

Here V is the underlying, Ŭ is some unknown parameter related to the long-run mean, ɓ is the 

speed of reversion towards this long-run level, and ůc is the volatility term. Although incorrectly 

specified for stock price movements, this model has gained popularity because it can be used to 

model a number of mean-reverting variables that have increasing volatility in levels. The VIX 

model presented by Grünbichler and Longstaff (1996) can be written as follows:   

ὅ Ὡ Ὡ ὠὗὑȿ’ τȟ‗ ϳ ρ Ὡ ὗὑȿ’ ςȟ‗ ὑὗὑȿ’ȟ‗  

where, 


τ

„ ρ Ὡ
 ȟ 
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’
τ

„
 ȟ 

‗ Ὡ ὠ 

Here Q(Ā|ɜ + I, ɚ) is one minus the cumulative distribution function of a chi-squared distribution 

with · as the random variable given (ɜ + I) degrees of freedom. The V0 is the initial price of the 

underlying. The non-centrality parameter is represented by ɚ. They note that there is another 

solution to this equation proposed by Sankaran (1963) that uses the normal distribution. This 

model is also very similar in form to a previous model for the valuing options on yields by 

Longstaff (1990).  

4.3.4. Empirical testing 

There is no way to observe a terminal distribution in markets. The market data we see is 

only the realization of a near infinite number of random variables. As with many economic 

questions, you cannot run a finely tuned series of experiments to create a terminal distribution to 

test. A Monte Carlo style approach would simply confirm whichever model I put forward or use 

to program the simulation. What we do have is a series of realized prices for the underlying. 

With each of the above models the Weiner Process is the same, but it is scaled in different ways 

with the underlying and different drift terms. A Weiner Process is equal to zero initially or is 

equal to zero when no time has elapsed. It is also everywhere continuous and nowhere 

differentiable. Additionally, it has the following property:     

ὡ Ў ὡ ͯ ὔπȟЎὸ  

Here N(0,ȹt) is the normal distribution with a mean of zero and variance of ȹt. The above 

relationship holds for any t such that no matter where you start the variation is independent of 

other time steps. I use daily data and constant time steps. Once I remove the effects of the drift 

term and the terms that scale dz, I am left with a series of normally distributed error terms.  
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My method is formalized as follows:  discretize each of the stochastic processes so that 

the error terms are described only by a Weiner process, run a linear regression to get the error 

terms, adjust the error terms for time and missing data effects, test the normality of each series, 

and compare their distance to a normal distribution. Each of these steps has some assumptions 

about the series and possible errors so I will describe each step in detail then give examples using 

each of OPMs presented above.  

All of the stochastic processes described above have a corresponding difference equation. 

Writing the equation out is simple, but the coefficients are unknown. There is also an argument 

that these coefficients cannot be known in the physical space. In its simplest form the drift term, 

ɛ, and the volatility term, ů, are assumed to be constant. The drift term is based on an 

unobservable risk premium so through the Girsanov Theorem the drift term is converted to the 

risk-free rate. I do not change the measure; rather, I assume a constant drift term. This does not 

mean that the drift term is always the same. As I note later on, options generally trade for 

maturities of less than a year. Frequently, these derivatives have a maturity of around one month. 

I assume that the drift term and volatility term are constant over a month. It is possible to use a 

risk-free rate, but one which is appropriate. It is also possible to use some type of regression to 

calculate daily or weekly risk premium, but any one of these adjustments will give a higher 

variance than simply assuming a constant found with a linear regression. In order to get the 

Weiner process as the last term, I use some algebra before or after discretization. Another 

equally workable approach is to use the conditional distribution to project the current underlying 

price one additional period forward. Both of these methods are illustrated below. 

The next step is to calculate the coefficients through a regression. I use simple OLS. 

Once the residuals are found they must be adjusted for differences in time steps. Here I use daily 
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data to calculate the series of error terms, but markets are not always open due to weekends and 

holidays. To generalize volatility to any time-step, it is well-known that maturity dependent 

volatility can be written as follows:   

„ „ЍὝ 

I assume that trading day volatility is constant within each regression window. As a robustness 

test later on, I count the days between observations and adjust the error terms accordingly. The 

regression will yield error terms that can be written as follows:   

ὩǶ „ЍὝ‐ 

If all the time-steps were the same, the T term would have a simple scaling effect. Once the 

error-terms are adjusted for missing values, they are tested for normality.  

There are a number of tests for normality. Any of these will work in this methodology for 

ranking OPMs. In the examples shown below, I use the Jarque-Bera test statistic. It uses the 

skewness and kurtosis to test for normality. Another test that is useful in this context is the 

Shapiro-Wilk test for normality. The Shapiro-Wilk test uses the difference between the ordered 

sample terms and their order statistics to compare the series to the normal distribution. To 

illustrate the initial step in this process I next show the discretization of each series.  

The BSM OPM is based on the following stochastic process:   

ὨὛ ‘ὛὨὸ„ὛὨᾀ 

To create a testable distribution I convert the above equation to a difference equation. For a 

summary of the stochastic calculus involved, I would refer you to Mikosch (1999). The future 

realization of the stock price under the above data generating process, DGP, is equal in 

distribution to the following:   

Ὓ Ὓ Ὡὼὴ‘
„

ς
Ўὸ „ЍЎὸ‐ǿ 
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To create an empirical distribution of the stochastic term, I divide both sides by the initial stock 

price and take the natural logarithm. 

ὰὲ
Ὓ

Ὓ
‘

„

ς
Ўὸ „ЍЎὸ‐ǿ 

The BSM OPM assumes a constant risk-free rate and constant drift terms. The ɛ in the above 

equation is not the risk-free rate but is a risk-adjusted return that is likely endogenously related to 

the stockôs movements. The time intervals allow me to adjust for weekends and missing data 

points. This simplifies the above equation to the following regression:   

ὰὲ
Ὓ

Ὓ
ὥЎὸ ЍЎὸὩǶ 

By subtracting the estimated coefficient from the log of the price relative, I get a distribution of 

error terms that, once adjusted for the time step, can be used for normality tests. Demeaning is 

not necessary for testing the normality of the GBM distribution, but this setup matches well with 

the ABM setup.  

The ABM OPM is based on the following stochastic process:   

ὨὛ ‘ὛὨὸ„Ὠᾀ 

The well-known conditional distribution for the above equation is shown below:   

Ὓ Ὓ Ὡὼὴ‘Ўὸ „
Ὡὼὴς‘Ўὸ ρ

ς‘
‐ǿ 

Inserting constants as done previously gives,  

Ὓ Ὓ ὧ ρЎὸ ὧЍЎὸ‐ǿ 

Since the above equation has a constant of zero, we can use the first difference to put the above 

equation in terms of returns. Rewriting gives the following regression,  

ЎὛ Ὓ ὧǶЎὸ ЍЎὸὩǶ 
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The coefficient c0 is the same as simple return on the stock price for the given change in time. 

Here the error term must be adjusted for the time step in the same way as the previous model.  

The CIR modelôs stochastic differential equation can be written as shown above:  

ὨὛ ὥὦ Ὓ Ὠὸ„ ὛὨᾀ 

The CIR model can be discretized into the following well-known equation: 

ЎὛ

Ὓ

ὥὦЎὸ

Ὓ
ὥ Ὓ Ўὸ ЍЎὸὩǶ 

This setup allows once again for a simple linear regression to obtain the series of error 

terms. The series of errors is then adjusted for different time steps to give the testable 

distribution. The error terms for ABM, GBM, and CIR can be compared to test which one is a 

better fit for option pricing.  

Each of the presented OPMs has used properties of the normal distribution to give a 

tractable model. The question of which model is a better fit for stock prices or any underlying 

remains. I test each series of time-step corrected error terms for normality using the Jarque-Bera 

Test. This test statistic is defined for use with regressions as follows:   

ὐὄ
ὲ Ὧ

φ
ὛὯ

ρ

τ
ὑό σ  

Where, n is the number of observations, k is the number of regressors, Sk is the skewness of the 

error terms, and Ku is the kurtosis of the error terms. The above statistic is compared to a ɢ2 

distribution with two degrees of freedom16. If the given error terms are normal then they should 

have a skewness equal to 0 and kurtosis equal to 3. It is highly unexpected to fail to reject the 

null hypothesis of normality in any of our empirical setups because it is well known that stock 

                                                 

16 In small samples this is test has a high Type-I error rate. A table of p-value conversions is 

available for hypothesis testing, but this is not the way that I use the test.  
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returns are negatively skewed and leptokurtic. Here the test statistic is used to measure which 

model is closer to normal. Other methods will work equally as well to test normality of these 

error terms.  

 

4.4. Data 

There are two data sets that I use to test this methodology:  the S&P 500 and the VIX. For 

the S&P 500, I use the daily closing prices without dividends. Dividends are not included in 

option pricing unless an extraordinarily high dividend is paid. These closing prices are readily 

available online from a large number of sources. The S&P 500 is an index based on the stock 

price of just over 500 companies that are representative of major US industries. These companies 

are chosen by committee and are also subject to several liquidity constraints. This index is a 

widely-used measure of the US economy and the stock market as a whole.  

The VIX is an index designed to track market volatility. It was originally based on the 

S&P 100, but was redesigned to better match market conditions in 2003 (for a more detailed 

explanation of this change see Whaley, 2009). The VIX in its current incarnation is the square 

root of the fixed leg of a 30-day variance swap. The fixed leg of this swap is implied by a 

number of implied volatilities in the options market. Since these options generally expire on the 

third week of each month, the implied volatilities of the nearby and second nearby options are 

used to build a term structure of volatility. This term structure is then used to compute the swap 

price or fixed leg. The methodology for obtaining the VIX has been applied to historical data so 

that the dataset begins before the new method for computing it was put forward. The daily VIX 

data must be adjusted because it has an overlapping data issue.  
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The options used to compute the VIX are within 39 days of their expiration. Since the 

method to compute the VIX uses a weighted average of the nearby and second nearby, using 

daily data will introduce an enormous amount of false serial correlation into the data set. To 

remedy this issue, I follow the 30-day calendar method put forward in Adhikari and Hillard 

(2014). So, for my analysis the distance between any two observations is at least 30 calendar 

days. Both data sets are included in the summary statistics shown in Table 4.1, Figure 4.1, and 

Figure 4.2. The summary statistics show many commonly known attributes of financial market 

data. The S&P 500 has a significant level of serial correlation which is consistent with the unit-

root often found in stock market data. The averages are only important for the VIX series which 

tends to be mean-reverting. Once the 30 day count method is used, the serial correlation drops 

noticeably.  

 

4.5. Empirical findings 

There is a wide range of applications for this testing methodology. It circumvents a major 

issue in empirical option pricing literature. The results from applying this methodology to the 

S&P 500 and the VIX are shown below.   

4.5.1. S&P 500 testing 

The S&P 500 is an index of many major stock prices. Although the CIR model is not 

appropriate given its mean-reverting assumptions, I use it for illustrative purposes in testing the 

S&P 500. I begin by using the entire series of data points in a single regression to get my 

residuals. I will later add the monthly regression results. The results from my tests without 

counting the extra time from weekends and missing days are shown in Table 4.2 and illustrated 

in Figures 4.3 and 4.4. A lower Jarque-Bera Test statistic indicates that the error terms are closer 
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to the mean. As can be seen from the table above, the ABM model fits best. It is followed by the 

CIR model, and the GBM model has the worst fit of the three models. Many of these differences 

come from the kurtosis of each residual series. Although each series displays negative skewness, 

the GBM model has a much higher level of kurtosis than the other models. This is due to the way 

that the natural logarithm reshapes the distribution of error terms.  

4.5.2. VIX testing 

The 30 day count VIX data is tested using my methodology. The results shown in Table 

4.3 indicate that the best fit is the GBM model. Econometrically, the Grünbichler and Longstaff 

(1996) model gives the best setup to capture the empirically observed behaviors of the VIX. The 

VIX is and must be mean-reverting because it is based on the standard deviation of an index. It is 

sometimes termed the ñfear indexò because during times of economic turmoil it spikes to 

significant heights. The CIR model accurately captures both of these characteristics. It allows for 

mean-reversion through the drift term and scales the volatility so that the distribution is right 

skewed. However, the GBM model still fits best. This is consistent with Wang and Daigler 

(2009), who in empirical testing note that the Grünbichler and Longstaff model gives systematic 

errors when compared to observed option prices. They also note that traders in VIX options tend 

to use a form of the BSM model. My results reinforce the BSM model as the best fit for the VIX.  

 

4.6. Conclusions 

The preceding pages put forward a new empirical method for ranking OPMs. This 

method does not use the option prices observed in the market and is thus free from the common 

performativity problem in finance. Performativity is often an issue for economics and finance 

researchers because the whole market can be wrong about a model, but if they are all in 
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agreement, then new or better models will not show empirical value until they are widely 

implemented by the market. The methodology presented here makes several assumptions about 

an OPMs drift terms and uses the properties of Brownian motion to create a testable vector of 

error terms which can be compared by their distance to the normal distribution.  

I have shown that in my initial testing of these models, the BSM OPM is the best fit for 

options that use the VIX as the underlying. This is consistent with previous papers on VIX 

option pricing. The ABM model is the best fit for the S&P 500 index. This is consistent with 

Brooks and Brooks (2013) who put forward a new option pricing model that allows for stocks to 

become worthless. Going forward, I intend to use a number of common option maturity windows 

and use a rolling regression approach to see how this methodology matches different classes of 

underlying securities with different classes of OPMs.  
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Table 4.1: Summary statistics  

Shown below are the sample statistics for each of my time series of interest. The S&P 500 and 

VIX both give daily observations. The VIX 30 Day is based on observations every 30 calendar 

days which resolves the data overlap issue in the VIX.  

 

 

Start  End Observations Mean Std. Dev.  Serial Corr. 

S&P 500 6/1/1993 1/29/2014 5392 1097.19 326.2571 0.999208 

VIX  1/2/1990 4/8/2014 6114 20.13 8.043644 0.98184 

VIX 30 Day 1/26/1990 2/21/2014 315 19.89 8.038048 0.800576 
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Table 4.2: Testing the S&P 500  

Shown below are the characteristics of the errors derived under the BSM and ABM models. Here 

the ABM model is a better fit because it is closer to the normal distribution that is integral to the 

assumptions for both models.  

 

 

GBM CIR ABM 

Mean 0.000 0.000 0.085 

Std. Dev. 0.012 0.386 12.978 

Skewness -0.245 -0.185 -0.343 

Kurtosis 8.889 7.265 6.138 

Regressors 1.000 2.000 1.000 

Observations 5391 5391 5391 

Jarque-Bera 7843.1 4115.2 2317.8 

Chi-P-Value 0.000 0.000 0.000 

Chidist 0.01 9.210 9.210 9.210 
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Table 4.3: Testing the VIX  

Shown below are the characteristics of the errors derived under the BSM, ABM, and CIR 

models. The 30 calendar day VIX dataset is used to correct for overlapping data issues. Here the 

GBM model is a much better fit.  

 

 

GBM CIR ABM 

Mean 0.000 0.002 0.552 

Std. Dev. 0.196 1.025 5.010 

Skewness 1.099 3.524 2.825 

Kurtosis 4.018 22.956 22.973 

Regressors 1.000 2.000 1.000 

Observations 314 314 314 

Jarque-Bera 76.5 5822.9 5618.6 

Chi-P-Value 0.000 0.000 0.000 

Chidist 0.01 9.210 9.210 9.210 
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Figure 4.1: Time series of the VIX  

Shown below is the time series of the VIX for the entirety of the dataset.  
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Figure 4.2: Time Series of the S&P 500  

Shown below is the time series of the S&P 500 for the entirety of the dataset.  
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