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ABSTRACT

This dissertatiorncludesthree essays on investments and time series econometrics. This
work gives new insight into the behavior of implied marginal tax rates, implied volatility, and
option pricing models.

The first essay examines the movemenngslied marginal tax rateé body of research
points to the existence of implied marginal tax rates that can be extracted from security or
derivative prices. We use the LIBA#ased interest rate swap curve and the-hSked interest
rate swap curve to exane changes in the impligdx rate. We document multiptatistically
and economically significant structural breaks in the Jongimplied marginal tax rate that are
not exclusively located in thenfancial crisis (one as receas October, 2010). Thedreaks
represent persistent divergence from long run averages and indicate that mean reversion models
may not accurately describe the stochastic processes of implied marginal tax rates.

In the second essalydevelop an asymmetric time series modelhaf VIX. | show that
the VIX and realized volatility display significant nonlinear effects which | approximate with a
smoothtransition autoregressive model. | find that under certain regimes the VIX depends
almost exclusively on previous realized volafilitUnder other regimes, | find that the VIX
depends on both its lags and previous realized volatility. Since the VIX has become a popular
hedging instrument, this finding has important implications for risk managers who elect to use
the VIX and its relatednvestment vehicles. It also has implications for the use of implied

volatility in value-at-risk forecasting.



The third essay presents a new model for option pricing model selethere is a
significant performativity issue intrinsic in much of theiop pricing literature. Once an option
pricing model (OPM) gains widespread acceptance, volatilities tend to move so that the OPM fits
well with observed prices. This often leads to systematic mispricing based purely on model
results. A number of systeniaissues such as volatility smile are present in OPMs. To remedy
this issuel propose a new method for ranking OPMs based on one step ahead forecasts. This
model transforms the data to build a distribution of the stochastic term present in OPM. This
sanple distribution is then tested for normality so that OPMs can be ranked in a Bdyesian

framework by their closeness to a normal distribution.
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CHAPTER 1 INTRODUCTION

The three essays of this dissertatnpirically examine the time series nature of several
well-known investments with empsia on the derivatives market. The financial derivatives
market has a notional size of around $1.2 quadrillany of these markets have unique and
complex time series features. Most of the research on derivatives pricing is done with a particular
modelin mind. My research goes in the opposite direction by using time series econometrics to
empirically test the assumptions of several models.

The= findings are interesting becaudey show several shecbmings inwell-known
pricing models. In the firsg¢gssay| show that many of the meaverting models used in the tax
exempt swap market are not empirically justified. The second essay shows that a number of
common methods for forecasting volatility do not match the behavior of the volatility index. The
third essay puts forward a new metbtmdyy for selecting an option pricing model that avoids the
performativity problem intrinsic to research in the derivatives markets.

For several decades researchers have known abplied marginal tax rate§ hese ta
ratescan be extracted from security or derivative pri¢edividual investors primarily drive the
difference in prices between taxable and-éagmpt markets. Researchers have previously
concluded that only large changes in tax laws would changeatimdrbehavior of investors
who switch between taxable and #xempt markets. The literature on pricidgrivatives
between these modeaiwdicated that these impliedarginaltax rates are meamverting In order

to test this behavior, &vuseswaps thatise a common taxable rate as the underlying and swaps



that use a common taexempt rate as the underlying/e document multiple, statistically and
economically significant structural breaks in the implied marginal tax rate. These breaks
represent persistedivergence from long run averages and indicate that mean reversion models
may not accurately describe the stochastic processes of implied marginal taXhistéisiding
has a number of implications for future resedrebause changing investor charastes

The second essay examines the data generating process of the volatility MiXiex
There seem to be at least two different states of the world for this index. One state is described as
when recent volatility is close to its lomgn mean. Thetber is when recent volatility is very
high. | positthat the market moves smoothly between trstatesand test for the presence of
smooth threshold autoregressi&TAR, behaviors.The volatility index and realized volatility
display significant nonlirer effects which | approximate with a smoatansition autoregressive
model. Under certain regimes the VIX depends almost exclusively on previous realized
volatility. Under other regimeshe VIX depends on both its lags and previous realized volatility.
Since the VIX has become a popular hedging instrument, this finding has important implications
for risk managers who elect to use the VIX and its related investment vefibkesise of a
STAR model is also radically different thardustry practice

There is a significant performativity issue intrinsic in much of the option pricing
literature.Option prices and models often have variables that are jointly de@mse an option
pricing model (OPM) gains widespread acceptance, volatilities tend to mdavat she OPM fits
well with observed prices. This often leads to systematic mispricing based purely on model
results. A number of systematic issues such as volatility smile are present in OPMs. To remedy
this issue | propose a new method for ranking OPislsed on one step ahead forecasts. This

model transforms the data to build a distribution of the stochastic term present in OPM. This



sample distribution is then tested for normality so that OPMs can be ranked in a Bélgesian
framework by their closess to a normal distributiorSince this methodology is simple to
deploy it is a useful first step in selecting the OPM that most appropriately matches a given
underlying. This dissertation is organized as follows: Chapter 2 contains the first essay
implied marginal tax ratesChapter 3 contains the second essaythe relationship between
implied and realized volatilityand Chapter 4 contains the third essaymy new option pricing

model methodology



CHAPTER 2: STRUCTURALCHANGESIN THE TAX-EXEMPT SWAP MARKET

2.1. Introduction

The modeling of financial instruments often contains implicit assumptions about
underlying processes, for example, the processes remain constant over time. This is not always
the case and our empirical work in finance tnigve some criteria for evaluating when the
underlying framework has changed. Many arbitrageurs are dedicated to finding new
opportunities to exploit. The history of derivatives valuation is filled with investors who have
developed a better model and wexkle to generate massive profits before revealing their
findings2 There is reason to believe that financial markets are not the same as they were before
the recent financial crisis. One sign of this change is in the municipal swap market where in
severalinstances the ta@xempt municipabased interest rate index has been at times higher
than its taxable counterparts. For example, on September 24, 2008, the Municipal Swap Index
(MSI) weekly reset annualized rate was 7.96% -&me&mpt) while the one weekondon
Interbank Offer Rate (LIBOR) rate was 3.94% annualized. MSI is comprised -@xé&mpt
instruments and on this date was more than twice as high as the taxable rate. Several sources cite

auction failures in the market clearing mechanism on this day.

1A working version of this chapter ewuthored with Dr. KenZirlott exists and is being
circulated.

2 Sheen T. Kassouf and Edward O. Thorp (1967) discovered the empirical relationship for a risk
free portfolio that has become the Ble®kholesMerton option pricing model. They generated
20% annualized returns ov@8 years.



The Securities Industry and Financial Markets Association reported that the total amount
of tax-exempt issuance for 2011 was $247.7 billion. For comparison, the total amount of
corporate debt issuance for the same year was $1.01 trillion. The marteetézempt bondss
substantial and offers qualified entities the opportunity to issue debt in which some earnings are
not taxable for individual investors. This tax shielding lowers borrowing costs for municipalities.
Investors do not pay taxes on theipon payments for bonds purchased in the primary market
and held to maturity. Bonds purchased in the secondary market selling above the revised price do
not incur taxes either if held to maturity. Given this tax structure, it seems reasonable that the
yield-to-maturity on a tasexempt bond would be equal to the after tax return on an otherwise
equivalent taxable bond. The yield curves, however, do not behave this way. Historically, the
yield curve for taxexempt bonds has had a steeper slope than thecyirld for taxable bonds
(e. g., Green, 1993; Longstaff ,-pRDall1ea darhd sh ag
studied for decades. During times of economic downturn the ratio between taxable -and tax
exempt rates indicates a much lower implied matgtax rate. These movements are
statistically and economically significant.

The remainder of thehapteris organized as follows.e8tion2.2 discusseshe relevant
literature. In sction2.3, we discuss our models, methodology, and daeticdh 2.4 reports the

empirical findings, andesctiors 2.5 and2.6 presents our discussion and conclusions.

3Debt instruments are defined in a variety of ways, such as notes, bonds, and warrants. The term
Abondo is used generally to include al/l f or ms
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2.2. Literature Review

One of the first known mentions of the taxempt status of municipal bonds is in 1895
when the Supreme Court ruled Bollock v. FarmersLoan & Trust Co.that municipal bonds
could not be taxed by the federal government. In recent times, there have been additional rulings
stating that the federal government could tax municipal securities if it passed legislation allowing
such a tax. No sh legislation has yet been successfully passed. For many years, researchers
have considered the information that can be gleaned from the comparative yields between
taxable and taexempt bonds. In some of the earliest work on municipal bond pricing,
DeAngelo and Masulis (1980) show an alternative method of calculating the implied marginal
tax rate by using the holding period return on a taxable ardx@xpt bond. In their model
comparing the aftetax holding period returns allows an investor or corponato determine
which bond is more profitable. Empirical literature has found that as the investment horizon
increases, the implied marginal tax rate decreases. This anomaly is called the municipal yield
puzzle.

Since there are several stark differenbeswveen the taxable and texempt markets,
some of the literature has focused on whether or not these structural differences explain the
municipal yield puzzle. The literature indicates that default risk and systematic risk are likely not
the causes ohe puzzle. Chalmers (1998) uses a data set composed of défeasdsito see if
differences in default risk between these markets explains the puzzle. Chalmers finds that

defeased bonds, which have essentially no default risk, still exhibit a more tgog@irdy yield

“Municipalities can defease bonds by creating a special purpose vehicle ttasesr special

U.S. Treasury securities that have maturities and notional amounts which exactly match the
obligations of the issued bonds. In this way all of the money needed to pay off the bondholders is
already set aside.



curve than their taxable counterparts. In a more recent paper, Chalmers (2006) shows that
differences in systematic risk also do not explain the fpunkle, but several other differences
between taxable and taxempt bonds show some promise

Green (1993) demonstrates how the ability to write off investment losses allows investors
to construct artificial zero coupon portfolios. He uses this type efdaantaged portfolio when
comparing taxable and taexempt yield curves. His model doesséayood explanatory power
for why the yield curve is more upwasloping for taxexempt bonds. He notes that within
taxable or tavexempt bond markets, institutions appear to dominate pricing; however, between
taxable and tasexempt bond markets individgaseem to dominate pricing. Although his model
shows significant explanatory power over certain tax regimes, currently, it would be illegal for
an entity to try to replicate his trading strategy. Ang, Bhansali, and Xing (2010) provide
empirical evidence it individuals demand a higher yield on discounted municipal bonds which
are subject to taxes on the implied capital gains than a direct model of yields would indicate.
Yield-to-maturities observed are not consistent with tax law in the cross sectionnafipal
bonds which taxes some of these gains at the capital gains rate and some at the income tax rate.
Here again they conclude that individuals are dominating pricing between taxable and tax
exempt bonds. In looking at the option structure of municgealurities, Brooks (2002) uses
Nel son and Siegleb6s (1987) parsimonious | evel
a taxable swap rate, LIBOR, and a-exempt swap rate. Brooks suggests that a risk premium
must be paid by municipalities fdne legislative risk that investors hold. Investors are short the
option that the federal government holds on tax Javisch is the possibility that legislators will
remove the tasexemption. If municipalities lose their t&axempt statushen they wouldhave to

pay a much higher interest rate and investors would see the price of their bonds fall



precipitously. One critique of this methodology is the lack of a credit/liquidity spread between
taxable and taxexempt instruments, but this can only be corgbfior if numerous assumptions

are made about the stochastic processes of the implied tax rates. Furthermore, estimates of the
credit/liquidity spread show it to be over an order of magnitude smaller than the implied
marginal tax rate (Longstaff, 2011).

There has beenesearch aimed at separating some of the confounding effects of the
structural differences between the -exempt and taxable markets. There is a relatively small
number of issuers in the corporate bond market compared to the number of isstiee
municipal bond market (~60,000 issuers). This means dissimilar liquidity. Additionally,
municipal issuers may have credit risk that is not the same as the credit risk of a corporate entity;
historical default rates show that municipal bonds tendefault less than corporate bonds with
the same rating. Longstaff (2011) uses an affine term structure model that allows for a
credit/liquidity spread to be incorporated into his analysis. He makes a number of assumptions
about the stochastic processedsnearginal tax rates and uses his model to solve for the
credit/liquidity spread and the implied marginal tax rate as well as the risk premium associated
with both of these measures. Using MSI for percentage of LIBOR basis swaps, he finds an
average implid marginal tax rate of 38% from August 1, 2001, to October 7, 2009. Our analysis
diverges from his in that we use a simplified model that does not use th¢eshoraite which is
only available weekly. Since we have daily data, we are able to get gveater for our tests.
Longstaff directly attributes changes in the credit/liquidity spread and the implied marginal tax
rate to cemovements in the shortest term rates. Towards the end of 2009 there is a large amount
of instability in his estimates of thenplied marginal tax rate. This period of time is precisely

when we find a number of structural breaks. In stark contrast to previous studies, Longstaff finds



a negative tax risk premium which he attributes to the highlcpetical nature of marginal tax
rates.

A literature has also been developed on the information contained in the yield spread
between taxable and taxempt yields on bonds that have the same maturity. This literature has
revealed the influence of tax expectations on the relative ph@tween taxable and tax exempt
bonds. Greimel and Slemrod (1999) investigate whether or not thxlgroposed by Steve
Forbes moved rates in the municipal swap market. They examine the spread between taxable and
nonttaxable bond yields at several éifént maturities. They find that the relationship at the 5
year and 1§/ear maturities showed movements in the implied tax rates as Steve Forbes chances
of becoming president increased then decreased as his chances diminished. They did not find that
thesechanges had any effect on they&far yield spread indicating that investors did not expect
any long term effects. Upon taking first differences, the significance of their results disappeared
which casts doubt on the hypothesis that these movements weed. deor the time period that

they used there was essentially just one event that could drastically change the relationship

between the taxable andtaxx e mpt yi el ds; Steve Forbesd presi
a flat tax. We ask a similar questn |, A Wer e t-telatedestructiagl ahangetevents in
the post financi al crisis?o0 In their study,

time, but other studies of interest rate movements and expectations have dealt with abrupt
strucural changes. This paper improves on previous research through the use of &erigme
variation in the yield curves which gives greater insight into the nature of the tax risk premium.
This is not the first paper to apply structural breaks in borid/yierve literature. The
Bai-Perron (2003) method for testing and identifying structural breaks is common because it

allows for both heteroskedasticity and autocorrelation. Brooks, Cline, and Enders (2012) use



structural breaks in interestte related deavior toree x ami ne o f sever al of
1984b) papers on information contained in the term structure and the return premium. Brooks, et
al. update the observations through December 2009 to see if forward rates predict spot rates.
They find thatthe behavior between forward and spot rates has changed and that several
coefficients in their main regressions are no longer behaving as previous studies have found.
They locate multiple structural breaks and conclude that one of the core observakoaswé 6 s
work no longer holds in capital markets. Fama (1984a & 1984b) showed that current rates in the
term structure are the best indicator of future spot rates. Brooks, et al. find that several structural
breaks have occurred; and currently, forward rateshe best indicator of spot rates. Using this

type of analysis we show several large, persistent structural breaks the implied marginal tax rate.

2.3. Methodology
2.3.1 Models

There has been a large amount of previous research that considers tibasheta
between taxes and investment valuation. Theeteempt securities market presents a means for
calculating the specific value of being classified aseieampt. The yield to maturity on a bond
can be a useful tool for evaluating investment poss#sl To lay the groundwork for our
analysis we follow a section of DeAngelo and Masulis (1980). Consider two Hwatdsve the
same par value and maturity and that pay no coupon payments. Assume that omsesiatx
and the other is fully taxable atth bonds have no chance of default. In this world, the only
thing an invstor must consider is his aftexx returns on the investment. For an investor who
pays no taxes, the bond that gives the higher return would be the better investmentwéashere

an investor who has a marginal tax rate of 100% of his additional income, then he should invest

10



in the taxexempt bond. For an investor at the margin who is indifferent between a taxable and
tax-free security his aftetax returns will consist of the faling relationship:

[ p Tij
wherereis the taxexempt interest rate at tinie rr.is the taxable interest rate at timp@ndU
is a measure of the marginal tax rate. It is important to note that the above equation includes a
number of simplifying asumptions about relative interest rates. We have assumed no liquidity
difference between the securities, no credit default differences between the securities, and no
difference in the coupon payment structure. Longstaff (2011) assumes that the spgf) (ki
on the MSI index can be represented as follows:

o 1 p T _
where M is the taxexempt dweek MSI rater is the riskfree interest ratdjis the marginal tax
rate of the marginal investor in VRDOs; aals a credit/liquidity spread over the riflee rate.
This model is constent with the findings of Liu, Longstaff, and Mandell (2006) who find that
an r term is statistically insignificant. Additionally, Longstaff (2011) assumes that the spot
(weekly) LIBOR rate can be written as follows:

0 i
where L. is the taxable LIBOR rater; is the riskfree interest rate; ang: is a credit/liquidity
spread over the riskee rate.

The taxexempt yield curve does not exist in an aggregated form. When looking for a
risk-free taxable rate, one option is Treassikdich exist for numerous maturities. Nevertheless,
in the taxexempt market, a single source of yields for numerous maturities doesisiofi.e.
which municipalbonds should be used to construct the yield curve?). We use data from the

market for MSibased swaps, and we follow a similar approach to Longstaff (2011) by using

11



swaps where the percentage of floating LIBOR rate is exchanged for the floating MSI rate. Using
fixed-for-floating interest rate swaps based on LIBOR and MSI, we synthetically ¢heate
LIBOR percentage basis swaps. Following the method outlined in Longstaff (2011), we create a
synthetic basis swap by using the percentage of a fixed leg of a LHO& interest rate swap
required to pay the fixed leg amount of the fixed leg of a-Bked interest rate swap. We end
up with a percentagef-LIBOR for MSI swap. These interest rate basis swaps are generally
priced in the swap market based on the percentage of LIBOR paid/received. These swaps serve
as a direct proxy for one minus the magj tax rate.

There are many reasons to assume that swaps offer a better measure of rates than bond
yields-particularly in the tasexempt market. Since interest rate swaps are based ortesinort
rates, the fixed leg of a swap tends to reflect the egdemtcumulation of realized shagrm
rates. This avoids preferred habitat problems which may be embedded in the yield curve. This
also keeps embedded optionality from entering into pricing. Even -éxampt bonds are not
putable or callable, the issustll holds the option of defeasance. Even for issuers of the highest
quality, defeased bonds have an altered set of risk characteristics. Swaps avoid this complication.
The swaps used here are widely traded in a standardized form so liquidity is oloteanpr

We do not estimate the values of the credit/liquidity spreads shown above. Longstaff
(2011) finds the average credit/liquidity spread over thefresk rate for the sheterm MSI rate
of 0.00565 with a standard deviation of 0.00621. This is twders of magnitude smaller than
numerous estimates of the implied tax rate. Structurthlgre is far less default risk swaps as
oppose to bonds. Bonds have a principal amount that is exchanged at maturity, but interest rate
swaps typically do not ekange the notional amount. The zston game structure of interest

rate swaps makes them ideal for effective symmetric hedging. If these swaps are used for
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hedgi ng, then | osses on the swaps should be
sheet.Interest rate swaps also tend to be enadlateralized further decreasing default risk.
Unlike municipal bonds which tend to be illiquid, swaps andrteEeson which they are based
are widely traded in a standardized form reducing the liquidity podidhe spread.
We are primarily interested in the behavior of the proportion okt@mpt to taxable
interest rate swaps as these give a proxy for the relative profitability of investing in taxable

versus taxexempt markets (from here on we refer tig trariable as th&axproxy).
T”: O dwnizé opd T

where sre,7is the swap fixed rate for a taxkemptT-year swap at time(MSI); srris the swap
fixed rate for a taxabl@-year swap at time (LIBOR); taxproxyr is our primary variald of
interest which is derived as shown above; disca measure of the marginal tax rate.

The method we use to test for the existence of structural breaks in this data is based on
Bai and Perron (2003). We use a minimum distance of 2 months betwees. [¢eaiparing the
number of structural breaks is done through Bayesian (BIC) or modified Schwarz (LWZ)
information criteria for each number of breaks. Additionally, for each number of structural
breaks the algorithm generatesttistics that can be compad t o Bai and Perron
critical values to determine model significance. Because we are testing for structural breaks, we
are limited in the types of models available.

We first test each of our variables for the presence of a unit root usifgugmented
Dickey-Fuller Test (1979) beginning with 20 lagged differences (almost an entire month). Since
there is no consensus on the data generating process faxproxy we use the procedure for

determining the existence of constant and {iread \ariables given by Dolado, Jenkinson, and

SosvilaRi vero (1990) . Il n addition to this test, \
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for unit root with two structural breaks. Once the order of the process is known, we can establish
the time seriesh@aracteristics necessary to test for structural breaks. Since HReBan method
requires the use of only autoregressive (AR) terms, we select the best AR(p) model for each
tenor of theaxproxy

The BatPerron method is computationally demanding & humber of possible breaks
in our data. Based on a recommendation from
structural breaks to five. Since the above set of tests relies on haviogpmsiant means, it is
reasonable that the series may dlawe nonconstant variance. If GARCH effects are present,
then they will reduce the power of structural break tests. However, all structural break tests had
p-values smaller than 1%. The tests for GARCH effects are included in the appendix.

Our dataset adains I(1) variables which can be combined in a way to form an 1(0)
variable indicating the presence of cointegration. The presence of cointegration shows that rates
are related and driven to long run levels. To make the time series of swap rates dewgatib
cointegration, a log transformation must be used. Recall that our model @xfirexyis as

follows:

S1’E;’(,T

T

=taxproxy ; ° (1- ¢)

We know that equilibrium swap rates individually are 1(1) series, whereby they do not
have a mean and they are not cavare stationary over time. The time series oftéxproxyis
1(0) under the unit root test so we know that the above relationship between I(1) variables yields
a stationary series. Cointegration requires that some linear combination of less statioesiry se

yields a more stationary series. Taking the natural log of the above equation gives the vector:

NS, ;- InS;,7 = Intaxproxy
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Implied tax rates are cyclicado as rates decrease the implied marginal tax rates tend to
decrease. In order to allow our regressito incorporate these effects, we relax the above
restrictions on the swap rates and constrainingetkigroxyto be a constant:

GINSer +g NS +9,=0
In the above equation is the estimated coefficienBy using the above equation as the error
correction function we can test for the level effects or arbitrage relationship between the
different swap rates. We follow the Engbranger methodology (1987) for identificationda
testing. We test the natural logarithm of the fbted swap rates for a unit root and confirm that
they are I(1). We solved for the coefficients in the above equation in order to determine the long
run relationship between the MBased swap rate anket LIBORbased swap rate. Next, we test
for residual autaorrelation to confirm this long term relationship. We estimate a VAR type

model as shown below:

DSTE;t,T = aTE (gl ln Sl'E;t,T +g2 ln ST;t,T +g0) + a all(i)DSTE;t,T +

i=1

a alz(i)[)ST;t,T + eI'E;t,T

i=1

DST;t,T =da; (91 In Srexr Y9, In Srit +g0) + a aZl(i)DSrE?t'T *

i=1

n
a aZZ(I)DST;t,T + eT;t,T
i=1

In the above equationid; is the estimated coefficient in the VAR EC mod@hce the above
models are estimated the level of error correction can be calculated and checked for statistical
significance. Here again the presence of structural breaks will bias our results dowawsnd

the estimated level of mean reversion towards the-emmection vector to be attenuated.

15



2.3.2. Data

We obtaindaily forward filled swap market data for the igglly traded maturities (1, 2,
3,4,5, 7,10, 15, 2@&nd 30year maturities) of IBOR (London Interbank Offer Rate) and MSI
(Securities I ndustry and Financi al Mar ket s
observations are omitted for all otir work. A plain vanilla LIBOR swap is typically settled
semtannually with the fixeddg being paid on a 30/360 day count convention so that each of the
paymentds identical. The floating leg of the swap is paid basechiannuallyon an actual/360
day count conventioh The rate used for the settlement of municipal swaps is the Municipal
Swap Index (MSI). This rate is developed by Municipal Market Data which is a subsidiary of
Thomson Financial Services. The MSI rate is based on high gralds:résettable, taxexempt
variable rate demand obligations (VRDOS$he value of this index is detmined by a market
clearing mechanism through a remarketing ag@otbe included in this indexa VRDO must be
large than $10 million. Its issuer must also have the highest -thort issuer credit rating
(VMI G1 by Mdodyds SaranAsy The VRDOdnusRlsaphe gettled on

Wednesday. The primary owners of these securities are money market funds whichuane

held by individuals (70% based on estimates by Criscuolo and Faloon, 2007). MSI is used as the

floating rate in the fixedor-floating interest rate swapsepresenting taexempt ratesAn

important note on these municipal swaps is that cash flows from these swaps are fully taxable but

the underlying rates are not

°Although recently there have dxe accusations of fraud in the setting of LIBOR, these swaps are
still widely traded; and a replacement for the basis swaps has not appeared.
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2.4. Empirical Results
2.4.1 Descriptive Statistics

The primay variables of interest foour study are the daily observations of the swap
curves for the commonly observed swap market quotations. It is important to note that our
taxproxydisplays far more stationgy than either of the fixefbr-floating rates fronwhich it is
derived. This can be seen in the serial correlations which are slightly lowarrfmroxy and the
variance, which is much smallshown in Table 2.10ur proxy follows the basis swaps in
Longstaff (2011).In results not shown, weompare degiptive statisticsfor the same time
period as Longstaffodés paper. They are al most
swap rates some slight discrepancy is expected. For the time period used in our tests we observe
higher serial correlatiomnd standard deviation. Both of which can be explainedtimctural
breaksthat makean otherwise stationary series appear tebsstationary.

In order to look more specifically at the structural breaks not due to changing tax laws,
we use only price after January 1, 2003 because previous years saw changes in the highest
marginal tax rate. Our data set covers more than seven years where the highest marginal tax rates
did not change, allowing for a test of structural breaks in the absence of tehaliages.

2.4.2. Unit Root Testing

The unit root testing was first done with the swap rates. We followed a gémeral

specific methodology by first identifying the appropriate number of differenced lag lengths as

follows:
Dy, :g/t—l-'-ain:lbth—i t&
Hereais the key test statistic for our unit roottest, th@s ar e t he coef ficient

differences, angk is our variable of interestWe did not use a constant or a time term in these
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regressions. The swap rates theoretically should not haveleteyministic drift over time.
Starting with 20 lagged values, warrowedour regressions down usingésts until the longest
lag was significant at the 5% lev#le then used the Dickelyuller critical values to evaluate the
existence of a unit rootn Table 2.2 we estimate the above regression for the optimum number
of coefficients and record the coefficients and thsiatistics.

We estimate these regressions over the entire sample period and identify the MSI series,
the In(MSI) series, the LIBOResies, and the In(LIBOR) series as containing a unit root because
we fail to reject the null hypothesis that theg coefficient is zero. Whenmsing the frst
difference of each series, w&ongly reject the null hypothesis that the differenced serigaioon
a unit root. Together these results indicate that the MSI series, the In(MSI) series, the LIBOR
series, and the In(LIBOR) series are each I(1) se¥Memove next to the unit root testing of the
taxproxy

There are several issues with testingtéxproxyfor the presence of a unit root. Since the
presence of structural breaks can cause a stationary series to fail to reject the null hypothesis of a
unit root, the rejection of a unit root is a stronger test than required for the use of-theriBai
procedure.Since there is no consensus in the literature on the characteristicgirodlata
generating functiontaxproxy we use the Dolado, et al. (1990) procedure that assumes that the
data generating process is completely unknown. This method begassitmating the following
equation:

Dy, =a, + @+t +8,, 6Dy, +&
Hereap is the constant term, arad is the drift coefficientThe optimum number of lags is found

in the same way as described aboleresults not shownwe eliminate the presence of a

constam and time trend term. From 2003 to the end of our sample period, this tests also fails to
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reject initially, then rejects at first differencaadicating that each tenor of tiexproxyis an 1(1)
process. However, we Ht find that there are multiplsignificant structural breaks in this
variable. To incorporate the presence of structural breaks, we run tfieétleea zi ci chds (
minimum LM unit root test with two structural breaks. The presence of structural breaks can
cause the Dicke¥uller testtod i | to reject, but fAa rejection
trend stationarityo wunder Lee and Strazicicho
shown in Table 2.3.

In a number of tenors, our results show that the series are statiwitar structural
breaks. Additionally, each model selects the maximum two structural breaks allowed under this
model. Since more structural breaks are present, it is likely that the failure to reject in the longer
tenors is due to the need to include #delitional breaks. To be thorough, we also test using a
model that allows for breaks in both the level andestepms.

Later tests with the BdPerron methodology show that we have structural breaks in both
the level and AR terms, so we also run Lee8ridr azi ci chdés Test with th
structur al breaks are present, the Lee and St
| ocation of the breaks. The | ocations are giyv
have occued before the break date for each break. Since all of our break locations with two
breaks are above 0.4 for the first break and 0.6 for the second break, we use the critical values,
from Table 2 in Lee and Str azitians$to tréate aplamggaer , f
(0.4, 0.6), (0.4, 0.8), and (0.6, 0.8). The plane that we create is in three dimewsiortbe
locations of the first and second breaks being two dimensionksthe 1 or 10% critical values
being the third dimension. By doirigis, we can linearly interpolate all of the necessary critical

values for our tests. The results from this test along with critical values are shown in Table 2.4.
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Table 2.4 shows that over a number of shorter tenors, we reject the null hypothesis in
favor of a stationary series with structural breaks. Based on the reported critical values, we
cannot reject for the longer tenors, but two issues arise: the fomour critical values and the
known presence of additional structural breaks. The critidalw® s gi ven i n Lee
paper are for 100 observations, making them further from zero than if the critical values were for
the 2000 observations used in our analysis. Generating these new critical values is
computationally untenable because t$test is quite computationally demandfig. our later
analysis, we find between 3 and 5 structural breaks in our series. The setup for the LS test does
allow for more than two structural breaks but the computational time required grows
exponentially wih each additional break making this tomaviable. The addition of these effects
will increase the likelihood that we select a model that is stationary with structural breaks
moving us toward our conclusion. We next move to see if thelddSéd fixedeg rates and the
LIBOR-based fixedeg rates move together.

2.4.3. Cointegration Model

One can argue that the-omovement of these rates is simply an artifact of each rate
having a similar tenor and that these rates are not in fact related. As a robustnegsren a
cointegration model to see if these rates actually do move together in a statistically significant
way as previous theory indicatéhe existence of a serarbitrage type relationship is ideal for
a cointegration model. A cointegration modeluseful for considering two processes that are
each themselves unit root processes but have some relationship to each other (like never moving

too far apart from each otheiQointegration depends on a linear combination of variables. To

®We calculated that it would take 4.59 years to generate a single critical value for 2000
observations with one afur office computers.
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create an addite relationshipwe use the natural logarithms of our implied tax rate equdtion.
following the EngleGranger (1987jnethodologywe have already tested eachafr series for
their order of integration and found In(MSI) and In(LIBOR) to be I(1) prosesAelinear
combination of these variables givieynthetaxproxyis shown to be an 1(0) proceske presence

of structural breaks are not accounted Warich reduces the power of this test

1 nh T Pl o Q

The next step is to estimate the lenig equilibrium relationship between the In(MSI)
and the In(LIBOR). Using these residyathe following regression is run to determine
significance of cointegration:

YO U -

Based onthis equation, ifwe reject the null hypothesisi=0 then the series is
cointegrated. Estimatingver the entire sample period @et theresults shown in Table 2.5. The
results show that wean strongly reject the null hypothe#isit the errors are uncetated These
findings are similar across tenorBhe linear regression is then used as an error correction
functionto modelthe fact that the series seem to be drawn back together when they are outside
of this equilibrium relationship. If the impliedxaate is constant over time, then any movement
in LIBOR should be mirrored by a proportionally constant movement in the MSanateice
versa Arbitrage done by investor switching should cause these rates to follow each other over
time. The coefficientson the natural log of the teexempt rate are not eduso 1, but
demonstratehat in each tenor there is some curvature in the cointegration line outside of log
space. This is attributed to the fact that theemempt rate collapses closer to the tagatblte
during the financial crisis. We next look at whether the M&ed or LIBORbased swap rates

move significantly towards the cointegration vector.
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We add error-correctionbehavior to a VAR model in order to see if divergence from
long-run behavior auses the series to move back togethkernatively, we ask the question: is
the error correction vector significant in regressions tiehtaxable rate on the LH&gressions
with the taxexempt rate on the LHS®yoth regressions? Using the error ectron vectors for
each tenor, we compute a VAR style model with lags of the natural logarithm of the first
difference of the MSbased and LIBOfased series. Lag lengths are found using the BIC.

In Table 2.6, we find that at the shortest tenors, thar €orrection vector coefficient is
significant only in the LIBOR equation. As we move past a four year tenor, the error correction
vector coefficient becomes significant, but only in the MSI equation. It seems that for short
tenors the LIBOR swap ratesror correct towards the MSI swap rates, and for long tenors the
MSI moves towards the LIBOR. This error correction is of similar magnitude in both variables.
At higher magnitudes the error correction terms for the LIBOR are negatweh shows these
variables moving away from each other. However, these terms are also not statistically
significant so we cannot say that they are not zero. Even with significant structural breaks across
all tenors, the normal pattern for these markets is for them to em@ct (significantly in one
market or the other except for the four year tenor). An examination ofdstiagistics indicates
that in every case except for the thirty year tenor, these time series GCaugper each other. In
the thirty year tenor, the BIOR GrangeiCauses MSI but not vice versa. Here again we see
significant evidence that these rates are highly related. Each of these ECM implies an impulse
response function which we show in Figure 2.2.

The impulse responses show that these equationaicantsmall but longun level of
persistence. This is also consistent with our knowledge of interest rates. Interest rates and related

instruments tend to display wmidot behavior in the sheterm and meamneversion over long
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periods of time (Cochrand991). Having shown that these rates are significantly cointegrated
even in the presence of structural breaks, we move to structural break testing.
2.4.4. Structural Break Testing

The nature of our data necessitates the use of a time series modet &ralysis In
order to test for thexistence of structural breaks, West neededd find the optimal lag length.

We use BoxJenkins methodology toatculate the optimum lag length for each tenor of our
taxproxy We find optimum lag lengths of 1 for eaténor anddefine the time series of our
taxproxyas an AR(1) process for structural break teSigt model can be written as shown
below:

ONwNi ¢fwd® T 00 wWwwWwNIi € Www
Herebo(t) andby(t) jointly and abruptly change several times over our testing winbliow: that
the moded of these seriesavebeenselected, wenove into the analysis of structulaeaks.

We begin our analysis by running the B&erron algorithm for the dataséiio see if
significant structural breaks occurred in the years when there were no changes in implied
marginal tax ratesve limit testing for structural breake after tle year2003 which isa single
tax regime These tests select the structural breaks shown in Table 2.7. The table indicates that
for most tenors there are at least five structural breaks inakproxy In each case -tests
indicate that for the selectedimber of breakghe results are significant at a greater than 1%
level. To further examine the size and magnitude of these structural breakempute 95%
confidence intervals for the location in time of each break. These results are shown in Table 2.8
The results show that most of the breaks are in the financial crisis. Not only do these numbers
indicate that there are significant changes in the implied marginal tax rate, they also show that

the level of mean reversion is quite different for long gusiof time during the financial crisis.
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This evidence casts doubt on models that assume a single stable implied marginal tax rate for a
given tax regime and on models that assume a mean reverting implied marginal tax rate. To
guantify the economic signdance of these structural break® take the fixed leg values at each
side of the 95% confidence intervalsown in Table 2.9

These structural breaks are statistically and economically significant given the large
notional value for this instrument. Ths&tatistical significance of these breaks has been
established through the use of Barron critical values so even though some oftéx@roxy
changes are small, they are still significant at the 1% level. Looking atybar Xenor, we find
that multipe significant structural breaks have occurred within a single tax regime. This is
consistent with tax effects previously documented in the literature (i.e. the Steve Forbes effect on
implied tax rates). In contrast to Greimel and Slemrod (1999), who fearsignificant effects
on the long run implied tax rates, we find that they8@r tenor shows statistically and
economically significant changes. These changes are in the absence of tax regime changes, and
they are quite large. In November 2008, the iegblmarginal tax rate dropped 15.3% and in
April 2009 the implied marginal tax rate rose 10.8%. We now outline several factors that may

have led to these structural breaks.

2.5. Discussion

The structural breaks happened for different reasons than thdisedun the previous
literature. These years did not see changing tax regimes. Outlined below are several explanations
for the changes found in this paper.

The flow of funds during the recent financial crisis is one possible explanation for the

significant structural breaks in the implied marginal tax rate. Since MSI is used for investment
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purposes for individuals, those moving their funds out ofeteempt investments would
influence prices. We expect to see funds move frorekempt to taxable as indduals change

their investment behavior due to lower expected tax liabilities. Suppose that a large number of
investors realize near the end of 2008 (or when they are filling their taxes) that their large losses
will materially affect their marginal tax t& This change in individual marginal tax rates could
cause them to change their investment behavior to maximize their after tax returns, and could
account for the additional shifts observed in 2009 and 2010. In order to see if fund flows line up
with the structural breaks, a number of different transformations were tested. None of these
transformations, first differences, or proportional measures yielded any pattern consistent with
the structural breaks in the implied marginal tax rates which are shdwguires 2.3 and 2.4.

Another potential argument for the observed structural breaks is changing credit
conditions. The frequency of many of these deviations indicates that this is unlikely to be the
case. Additionally, the underlying municipal swap rasebased on seven day resettable
securities. The short duration of these securities means that they can respond quickly to changing
credit conditions, but the fact that the index includes only issuers with the highest rating
available for shorterm issuergasts doubt on this explanation. Appleson, et al. (2012) ghow
Table 2.10that although there have been a large number of defaults in the municipal bond
market, there are very few among rated issukable 2.10shows that there have been less than
118muni ci pal defaults from issues rated by S&F
larger sample of rated and unrated municipal issuers, there exists some clustering during the
recent financial crisis. During the recent financial crisis, a number of ipsndng agencies lost
their high credit ratings and some municipal issuers lost their credit guaranties. By detimdion

MSI adjusts for these effects by only including VRDOs with issuers that have the highest
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possible shorterm credit ratig. The dr@ in available highlyrated issuers could explain some

of the variation, but we would expect movement in a single direction. The rare nature of rated
municipal default implies that a changing credit environment is unlikely to explain the observed
structurdbreaks.

There is also an argument that these results are driven by the suppherémagt bonds.

In order to look at the supply effectse pull IRS records for the number and mount of tax
exempt governmental bonds each year which is showiable 211. Tax-exempt private

activity bonds are still subject to the AMSD they are not included in this numb&nhe amount

of issuances is highest in 2003 and 2009. The IMTRs observed in 2003 are for many tenors some
of the highest IMTRs. The IMTRs observed 2009 are some of the lowest observed in our
analysis. Hencea supply side story does not fit our observed structural breaks. This additional
evidence is again consistent with changing investor tax situations through the financial crisis.

A recent papeby Mitchell and Pulvino (2012) shed light on fire sales done by
rehypothecation lenders during the recent financial crisis. They use a number of proprietary data
sources to illustrate the collapse of several different types of-guasiage trading sttagies
often used by hedge funds. In the weeks folloviire)- e h man Br ot h ethesnarkebankr u
for short term financing almost completely disappeared and at the same time lenders attempted to
liquidate their collateral holdings. This caused a numbeuastarbitrage trades to diverge from
their longrun levels for months until new capital arrived to trade on almost certainly profitable
trading opportunities. In the samein, there is an expected lengn mean for the implied
marginal tax rate. Fige 1 shows that in 2006 and most of 2007té#x@roxyis almost flat. In

2008 thetaxproxyfluctuates wildly at around the same time the short term financing market
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dried up. The limited leverage available to exploit arbitrage opportunities is one likely

explanation for the persistence observed structural breaks

2.6. Conclusion

We document several structural breaks that have occurred in the implied marginal tax
rate as observed from M®hsed and LIBOBased swap markets. These structural breaks are
statstically si gni fi cant under Bali and Perronodos me t
significant. We trace major changes twth the taxable and teexempt marketsAn important
consideration going forward is that these breaks tend to occur during timeraimec
downturn.

This information could be used as a macroeconomic hedge. If these rates diverge away
from their longrun means in a predictable way, an entity that depends on taxes could enter into a
basis swap that increases in value during times oéldax revenues and correspondingly lower
implied tax rates. Additionallypur results cast ddat on the use of numerous shoate models.
Structural changes have been predicteth@previous literature between different tax regimes,
but we have shownHhat in the absence of tax regimesuctural breaks in the implied tax rate
have still occurred. This challges the effectiveness of shoate models in applications over
long periods of timeOur findings also indicate that future studies of assetipgidetween
taxable and taxexempt asset pricing must have some way of controlling for clientele changes
because the economic climate can significantly change the distribution of tax filers based on

where they are in different tax brackets
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2.A. APPENDIX
2.A.1. GARCH Effects

There exist several ways to pretest for generalized autoregressive conditional
heteroskedasticity. The presence of4tonstant variance is fairly common in financial variables
which generally behave as GARCH(1,1) processes. We take each of the variables and
individually test for these types of nonlinear effects. Then the best GARCH process for each
series is found by using as a starting point the best ARIMA process and then addiegtdiffe
GARCH characteristics. Since their means move togeithisrplausible that the variance of the
tax-exempt rate moves with the variance of the taxable rate. A multivariate GARCH model of
the lagged differenced taexempt series and the lagged differed taxable series are used. We
show here some multivariate GARCH models of thgedr maturity. If the differences move
together and the variances move together, then it is possible that the series are cointegrated. If
GARCH effects are present, then yhwill reduce the power of structural break testing.
However, since our tests for structural breaks resulted in highly statistically significant results,
we ignore these effects in the body of our paper.

The variables used to create the cointegrationovegere also found to have GARCH
effects. Testing for different types of univariate GARCH effects indicated an IGARCH(1,1)
model forgpl n ( L | aBdyR )MS]). Model selection was done using AIC and BIC. One
problem with the these observed effects is that under the arbitrage relationship described earlier,
there will be a group of investors who will have an incentive to switch theirtmeess back
and forth depending on their expected marginal tax rate. The univariate GARCH models shown

below do not capture any type of volatility spillover, but multivariate GARCH models did show
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significant spillover effects. Because we are primarilyuad on the data generating process of
the means, we do not show the variance effects.

To give a description of the variance of the series in this stueyegin by pretesting
our series for nonlinear effects bying the McLeoeli test (1983). Each othe tenors of the
taxproxyvariables shows significant autocorrelation in the squared residuals indicating GARCH
effects. The presence of these effects reduces the power of structural break tests. Much of the
GARCH effects are concentrated in the fourtly likely because the underlying rate on the
municipal swap, MSI, is settled weekly. These results are shown in Table 2.A.1. Since structural
break tests were highly statistically significant in the presence of GARCH effects, there is no
reason to try toantrol for them in our main results.
2.A2. Structural Breaks Related to Tax Regime Changes

We have put forward that our work is the first to find structural breaks within a single tax
regime. This presupposes that a tax regime change will involve &uséilugreak in implied tax
rates. In order to test this ide@e use several other datasets. The data set used for this paper goes
back to April 20, 2'@duded theThigleest @ ginalitax fta o deCling s 0
over 3 years: 39.6% in 2000,.2% in 2001, 38.6% in 2002, and 35.0% in 2003. The first law in
this set had tax rates declining over a 5 year period, but the second law signed in 2003 had these
tax cuts completed in 2003. The turn of the agntsaw the collapse of the dodm bubble
which is a contravening effect present in this time period. Figure 2.A.1 gives an overview of our
taxproxY s movements over these years. An upward

lower implied marginal tax rate. Correspondingly, the shdeien impgied tax rate is lower in

" The Economic Growth andax Relief Reconciliation Act signed in M&001, andJobs and
Growth Tax Relief Reconciliation Asigned in May2003
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2003 than in the previous years. The results in Table 2.A.2 show structural breaks that are
significant at the 1% level except for they&ar tenor which is significant at the 2.5% level. The
structural breaks and their correspmgdAR(1) models are shown in Table 2.A.3.

The results show aumber of significant changes in the model terms as well asriong
means. The general trend is that axproxyp s -fun megn is higher in the later portion of the
time window. The chao<lating to the end of the dobm bubble and the resultant losses in the
stock market would move many investors to a lower tax bracket. This change in investment
behavior could lead to a declining implied marginal tax rate (which in our framework would be
an increasingaxproxy. The other viewpoint is that investpn®alizing that they would be
paying a lower marginal tax rate, required a higher return on theexemxpt investments. The
results show evidence of both effects. Several spikes ita¥peaxy are consistent with market

wide losses, and the overall upward trend is consistent with the predicted effects of a tax cut.
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Table 2.1: Summary Statistics

Our dataset spanned from January 1, 2003 to March 4, 2011; and can be obtained through
Bloomberg Note that there are slightly few observations for the SIFMA/&& swap, but the
earlier observations are kept for our analysis throughout the paper.

Panel A: Municipal Swap Index (MSI) Based Swap Data

Index Mean (%) Etr?gflard Minimum Median Maximum ggrrlraellation Observations
1-year SIFMA Swap 1.977 1.155 0.326  1.876 3.839 0.999 2133
2-year SIFMA Swap 2.204 0.999 0.420 2.198 3.872 0.999 2133
3-year SIFMA Swap 2.442 0.862 0.582 2.459 3.926 0.998 2133
4-year SIFMA Swap 2.654 0.753 0.813 2.714 3.978 0.997 2133
5-year SIFMA Swap 2.838 0.663 1.098 2.912 4.011 0.997 2133
7-year SIFMA Swap 3.114 0.544 1.640 3.222 4.095 0.993 2133
10-year SIFMA Swap 3.391 0.456 2.109 3.512 4.222 0.994 2133
15year SIFMA Swap 3.685 0.398 2.453  3.787 4.417 0.992 2133
20-year SIFMA Swap 3.829 0.395 2,504 3.913 4.600 0.992 2133
30-year SIFMA Swap 3.944 0.380 2.528 4.007 4.702 0.991 2133
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Panel B: London Interbank Offer Rate (LIBOR) Based Swap Data

Standard

Serial

Index Mean (%) Minimum Median Maximum . Observations
Error Correlation
1-year LIBOR Swap 2.713 1.798 0.361 2.428 5.757 1.000 2133
2-year LIBOR Swap 2.991 1.569 0.474  2.865 5.741 0.999 2133
3-year LIBOR Swap 3.291 1.372 0.676  3.246 5.745 0.999 2133
4-year LIBOR Swap 3.552 1.216 0.971 3.565 5.755 0.998 2133
5-year LIBOR Swap 3.769 1.092 1.313 3.835 5.773 0.998 2133
7-year LIBOR Swap 4.093 0.925 1.940 4.211 5.837 0.997 2133
10-year LIBOR Swap 4.397 0.803 2.328 4.549 5.932 0.996 2133
15year LIBOR Swap 4.685 0.728 2.476 4.884 6.031 0.996 2133
20-year LIBOR Swap 4.802 0.723 2.445 5.022 6.083 0.996 2133
30-year LIBOR Swap 4.860 0.714 2.363 5.079 6.108 0.996 2133
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Panel C: Time Series of MEIBOR Basis Swap

Index Mean Standard Minimum Median Maximum Serial . Observatios
Error Correlation
l-year Swap  78.56% 0.100 65.17% 75.54% 106.37% 0.987 2133
2-year Swap 77.10% 0.074 66.23% 75.94% 99.38% 0.989 2133
3-year Swap 76.56% 0.066 67.02% 75.34% 99.06% 0.988 2133
4-year Swap 76.52% 0.061 67.08% 75.40% 100.93% 0.987 2133
5-year Swap  76.77% 0.059 67.67% 75.82% 97.23% 0.989 2133
7-year Swap 77.17% 0.057 53.39% 76.51% 98.05% 0.977 2133
10-year Swap 77.98% 0.056 69.29% 77.32% 101.53% 0.989 2133
15year Swap 79.44% 0.058 70.49% 78.57% 107.47% 0.991 2133
20-year Swap 80.52% 0.060 7145% 79.46%  104.69% 0.994 2133
30-year Swap 82.01% 0.065 72.55% 80.57% 108.95% 0.993 2133
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Table 2.2:Unit root testing

Shown below are the results of unit root testing (from January 1, 2003 to March 4, 2011) for the
observed fixed leg swap rates ugitne DickeyFuller methodology. The maximum number of

lags included is 20.

Panel A: Tenors 1 through 10

1-Year MSI @ MS InMSI ol nM LIBOR o LI BInLIB @ I n
Lag -0.000201 -0.92081 -0.00024 -1.01234 -0.00015 -0.757305 -0.00024 -0.83329
t-stat -0.58539 -11.2852 -0.33242 -9.55141 -0.50734 -12.16124 -0.4539 -8.96136
No. of Lags 16 15 17 20 10 9 17 20
2-Year MSI PpMSI INnMSI ol nM LIBOR @ LI BInLIB @ I n
Lag -0.000261 -1.17558 -0.00054 -1.12828 -0.00022 -1.020027 -0.0004 -1.00934
t-stat -0.62573 -17.8611 -0.73302 -9.74196 -0.55737 -13.70653 -0.70009 -9.3984
No. of Lags 8 7 16 20 10 9 16 20
3-Year MSI ® MS InMSI @l nM LIBOR @ LI BInLIB p I n
Lag -0.000266 -1.21613 -0.00049 -1.07922 -0.00024 -1.033228 -0.00036 -0.93187
t-stat -0.62434 -18.0728 -0.78889 -9.38471 -0.58752 -13.74263 -0.72512 -8.96163
No. of Lags 8 7 17 20 10 9 10 20
4-Year MSI @ MS InMSI ol nM LIBOR @ LI BInLIB @ I n
Lag -0.00025 -1.18974 -0.00038 -1.03613 -0.00024 -1.033442 -0.00028 -0.88545
t-stat -0.60031 -11.4899 -0.72385 -9.2297 -0.58788 -13.86244 -0.66186 -8.70163
No. of Lags 17 16 17 20 10 9 10 20
5-Year MSI @ MS InMSI ol nM LIBOR o LI BInLIB @ I n
Lag -0.000228 -1.13862 -0.00029 -1.09451 -0.00023 -1.04055 -0.00022 -0.88859
t-stat -0.57537 -11.3505 -0.64674 -11.0055 -0.57206 -13.80702 -0.59258 -8.61413
No. of Lags 17 16 17 16 10 9 10 20
7-Year MSI @ MS InMSI @hMSI LIBOR o LI BInLIB @ I n
Lag -0.000238 -1.28483 -0.00023 -1.39069 -0.0002 -1.038916 -0.00016 -0.86352
t-stat -0.54135 -39.0355 -0.53531 -15.3333 -0.53828 -13.94831 -0.50227 -8.46408
No. of Lags 2 1 10 9 10 9 10 20
10-Year MSI ® MS InMSI @/ nM LIBOR @ LI BInLIB @ | n
Lag -0.00016 -1.07443 -0.00013 -1.06737 -0.00018 -1.041503 -0.00012 -0.85388
t-stat -0.49694 -10.9206 -0.46438 -10.9454 -0.51599 -13.95931 -0.45392 -8.32844
No. of Lags 17 16 17 16 10 9 20 20
Significance Level 0.01 0.025 0.05 0.1

Dickey-Fuller Critical Values -2.85 -2.23 -1.95 -1.62
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Panel B: Tenors 15 through 30

15Year MSI ® MS InMSI @l nM LIBOR o LI InLIB @ I n
Lag -0.00014 -1.12925 -0.0001 -1.13006 -0.00016 -0.99431 -9.9E05 -0.8683
t-stat -0.48285 -11.0729 -0.42707 -11.1747 -0.53509 -10.5113 -0.44472 -8.5683
No. of Lags 17 16 17 16 17 16 17 20
20-Year MSI @ MS InMSI @l nM LIBOR @@ LI InLIB @ I n
Lag -0.00014 -1.18466 -9.8E05 -1.18482 -0.00016 -1.03909 -9.5E05 -0.85923
t-stat -0.50658 -11.4287 -0.44206 -11.5398 -0.5544 -14.0586 -0.45408 -8.58345
No. of Lags 17 16 17 16 10 9 17 20
30-Year MSI ® MS InMSI @l nM LIBOR @ LI InLIB P I n
Lag -0.00013 -1.27764 -8.7E05 -1.27185 -0.00016 -1.03926 -9.2E05 -0.85249
t-stat -0.47438 -12.622 -0.40533 -12.7533 -0.54648 -14.0508 -0.44136 -8.49022
No. of Lags 16 15 16 15 10 9 17 20
Significance Level 0.01 0.025 0.05 0.1

Dickey-Fuller Critical Values -2.85 -2.23 -1.95 -1.62
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Table 2.3:Lee-Strazicich crashtest

Below are the residt f or Lee and Strazicichoés Minji mum L
with two structural breaks under endogenously determined break locatitma break only in
the |l evel term (the Acrasho model ). Wa#5%et a

of the possible break dates. Critical values given here are for 100 observations; our results use

the over 2000 observations from our dataset.

Breaks in the Constant "Crash" Mode

Tenor Coefficient T-Stat Lags Breaks First Break Second Brea
1-year -0.0182 -3.6376 4 2 3/5/2004  12/16/2008
2-year -0.0186 -3.9384 5 2 11/4/2004  11/19/2008
3-year -0.207 -4.143 2 2 5/11/2004 11/19/2008
4-year -0.205 -4.0445 5 2 1/21/2008 11/19/2008
5-year -0.0208 -4.1166 2 2 1/21/2008 11/19/2008
7-year -0.084 -4.3269 3 2 6/10/2008 3/4/2008
10-year -0.02 -3.9884 5 2 11/19/2008 5/14/2009
15year -0.0118 -3.1522 5 2 1/21/2008 12/15/2008
20-year -0.0093 -2.9996 5 2 3/14/2008 9/12/2008
30-year -0.0096 -3.0036 5 2 1/21/2008 9/12/2008
Significance Level 0.01 0.05 0.10

Critical Values -4.545 -3.842 -3.504
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Table 2.4:Lee-Strazicich both test

Below are the results for Lee and Strazicich:
with two structural breaks under endogenously determined break lgatith a break in the

level and slope terms. We set a maximum of 5 lags and exclude the first and last 5% of the
possible break dates. Because the critical values are dependent on the location of thevdreaks

create a plane from the three reportedaaitvalues nearest each break location pair results then

solve for the appropriate critical values for each test. Critical values given here are for 100
hundred observations; our results use the over 2000 observations from our dataset.

Breaks in Both LS Critical Values

Tenor Coefficient T-Stat First Break Second Break 0.01 0.10

l-year -0.0373 -5.2041 6/1/2006  8/21/2009 -6.41 -5.32
2-year -0.0424 -5.9978 6/1/2006  9/22/2008 -6.43 -5.31
3-year -0.0353 -5.5017 5/31/2006 9/22/2008 -6.43 -5.31
4-year -0.343 -5.5189 5/31/2006 9/22/2008 -6.43 -5.31
5-year -0.0303 -5.409 1/29/2007 12/10/2008 -6.38 -5.32
7-year -0.0446 -5.2971 9/5/2008  4/10/2009 -6.28 -5.32
10-year -0.0332 -5.1363 9/5/2008  4/10/2009 -6.28 -5.32
15year -0.0289 -4.865 9/5/2008  4/28/2009 -6.28 -5.32
20-year -0.0234 -4.7247 9/4/2008  4/28/2009 -6.28 -5.32
30-year -0.234 -4.7095 9/4/2008  5/6/2009 -6.28 -5.32
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Table 2.5:Error correction vector

The left side shows the linear regression of the error correction vector folydar literest rate

swaps. The regression is done with ordinary least squares and variances are corrected for
heteroskedasticity and autocorrelation usidg i t e s r o b u $ram Januaayrl d2803d er r
to March 3, 2011. This is the first part of the ERGlarger Test for cointegration. The right side

shows the regression of the first difference of the residuals from the previous linear regression as
the dependent variable. The independent variable is the lagged residual. The null hypothesis of a
coefficient egal to zero means that there is not cointegration. We reject the null hypothesis in
favor of cointegration. ECV is defined as follows:

Error Correction Vectors Cointegration Stat.
N-year Constant Ln(MSI) | Coefficient T-statistic
1-year 0.1873 1.137 -0.0413 -6.762
Standard Error  0.0025 0.0025 0.0061

2-year 0.1743 1.1368 -0.031 -5.876
Standard Error  0.0023 0.0022 0.0053

3-year 0.1434 1.156 -0.0312 -5.842
Standard Error  0.0029 0.0028 0.0053

4-year 0.1032 1.1805 -0.0319 -5.883
Standard Erroir  0.0038 0.0035 0.0054

5-year 0.05 1.2148 -0.0278 -5.485
Standard Erroi  0.0048 0.0043 0.0051

7-year -0.0413 1.2709 -0.0857 -9.776
Standard Erroir  0.0075 0.0063 0.0088

10-year -0.1636 1.3424 -0.0291 -5.618
Standard Erroir  0.0095 0.0076 0.0052

15year -0.3234 1.4284 -0.0261 -5.319
Standard Error  0.0137 0.0102 0.0049

20-year -0.3963 1.4605 -0.0214 -4.817
Standard Error  0.0156 0.0113 0.0044

30-year -0.5307 1.5353 -0.0241 -5.106
Standard Error  0.0174 0.0124 0.0047
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Table 2.6 VAR EC model

Shown below is the VARype model incorporating the above error correction term franuary
1, 2003 to March 4, 2011. The LHS is the first difference of the natural logarithm of either the

MSl-based swap fixed rates or the LIB@Bsed swap fixed rates. The significancéJof i n t h e
first regression shows that MSI error corrects towards LIBOR (LIB). Lag lemytke{ection
was done using the BIC. The following regression is used:
n n
DSTE;t,T = aTE (gl In STE;t,T +gz ln ST;t,T +g0) + a all(i)DSTE;t,T + a alz(i)[Br;t,T + eFE;t,T
i=1 i=1

Dsr;t,T =a;(g.In Sterr Y92 In Srat +go) + a a21(i)DSTE;t,T + a_. azz(i)DSr;t,T t ey

Panel A: Tenors 1 through 5

i=1

i=1

1-Year Swap

LHS Var. U Constant gl n L-L)E opl n L-P)E opl n M&)l ol n M)l
! nMES-0.005 -0.001 0.250 -0.017 -0.125 -0.107
t-stat -0.634  -0.956 6.811 -0.472 -3.586 -3.091
@l nLI 0.023 -0.001 -0.042 -0.129 0.153 0.024
t-stat 2835 -1.014 -1.215 -3.736 4.672 0.724
2-Year Swaps

LHS Var. U Constant ol n L-1)E qpl n L-R)E ool n M&)l ol n M)l
! n M< -0.002 0.000 0.116 -0.113 -0.102 -0.005
t-stat -0.166  -0.682 2.360 -2.304 -2.029 -0.095
@l nLI 0.021 0.000 -0.101 -0.157 0.119 0.062
t-stat 1.957 -0.662 -2.012 -3.155 2.337 1.210
3-Year Swaps

LHS var. U Constant gl n L-1)E qpl n L-2)E gpl n M3)l ol n M)l
!l n M< -0.006 0.000 0.110 -0.141 -0.113 0.026
t-stat -0.546  -0.509 2.335 -2.991 -2.305 0.543
! nLI 0.017 0.00 -0.089 -0.186 0.093 0.091
t-stat 1.628 -0.517 -1.825 -3.833 1.849 1.824
4-Year Swaps

LHS Var. U Constant gl n L-1)E pl n L-2)E gpl n M)l ol n M)l
!l n M< -0.012 0.000 0.139 -0.131 -0.145 0.021
t-stat -1.189  -0.412 3.046 -2.882 -3.068 0.441
el nLI 0.010 0.000 -0.092 -0.201 0.096 0.104
t-stat 0.932  -0.437 -1.940 -4.279 1.961 2.126
5-Year Swaps

LHS Var. U Constant ol n L-1)E qpl n L-PD)E ool n M&)l ol n M)
! n M< -0.013 0.000 0.021 -0.120 -0.023 0.005
t-stat -1.426  -0.356 0.472 -2.675 -0.474 0.102
@l nL I 0.006 0.000 -0.162 -0.194 0.148 0.092
t-stat 0.631 -0.379 -3.360 -4.028 2.851 1.787

41



Panel B: Tenors 7 through 30

7-Year Swaps

LHS Var. U Constant ¢l n L-L)E opl n L-)B pl nL-B)B @l n MI) ol n M)l ol n M)l
®l nME 0,035 0.000 0.342 0.055 -0.002 -0.427 -0.168 -0.024
t-stat -3.407 -0.262  9.099 1.413 -0.064 -12.446 -4.622 -0.729
wl nL1 .0.003 0.000 -0.063 -0.168 -0.057 0.027 0.085 0.097
t-stat -0.345 -0.326  -1.872 -4.816 -1.702 0.889 2.623 3.253
10-Year Swaps

LHS var. U Constant ¢l n L-L)E qpl n L-2)B ol n MI) ol n M)

®l nMS .0.017 0.000 0.094 -0.123 -0.096 0.015

t-stat -2.363 -0.256  2.494 -3.258 -2.255 0.352

@l nLI1 0002 0.000 -0.174 -0.189 0.166 0.109

t-stat -0.250 -0.289  -4.104 -4.483 3.497 2.323

15-Year Swaps

LHS Var. U Constant ! n L-L)E ol n L-2)B !l n M3) ol n M)

wl n MS .0.016 0.000 0.164 -0.013 -0.170 -0.091

t-stat -2.555 -0.243  4.504 -0.355 -4.212 -2.276

wl nL1 .0.004 0.000 -0.113 -0.066 0.089 -0.009

t-stat -0.555 -0.312  -2.795 -1.632 1.976 -0.213

20-Year Swaps

LHS var. U Constant ! n L-L)E gl n M)l

®! nME 0016 0.000 0.164 -0.178

t-stat -2.754 -0.252  4.228 -4.175

®l nLl .0.006 0.000 -0.054 0.032

t-stat -0.887 -0.309  -1.267 0.677

30-Year Swaps

LHS var. U Constant ! n L-L)E ool n L-2)B !l n M3) @l n M)

! nMS .0.014 0.000 0.149 -0.061 -0.158 -0.049

t-stat -2.517 -0.228  4.013 -1.637 -3.787 -1.182

wl nL1 .0.003 0.000 -0.069 -0.099 0.041 0.017

t-stat -0.474 -0.314 -1.644 -2.375 0.867 0.363
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Table 2.7: Testing the number of breaks

Below are selected results from the Pa&rron methodology performed with an optimaj la
length of 1. Model selection between the breaks in the constanterAR or both was done
through the use of the BIC function. The model selected and shown is the model with breaks in
the constant and AR term from January 1, 2003 to March 4, 201-PeBain critical values are
shown next t o t h-statisice The ¢uhcBodal form can|bé sepreBented as
follows:

ONwNi ¢fwd T o00wwNi € ww

| Structural Breaks BIC(p) |

N-Yeartaxproxy No Breaks Constant AR(1) Term Both F(m) 0.01 Sig

1-Year -8.23 -8.26 -8.25 -8.41| 54.50 10.28
Number of Breaks 5 5 5
2-Year -8.99 -9.01 -9.01 -9.10| 36.14 10.28
Number of Breaks 5 5 5
3-Year -9.15 -9.17 -9.17 -9.24| 30.44 10.28
Number of Breaks 5 5 5
4-Year -9.25 -9.27 -9.27 -9.35|49.71 12.06
Number of Breaks 5 5 3
5-Year -9.47 -9.49 -9.49 -9.57|50.25 12.06
Number of Breks 5 5 3
7-Year -8.83 -8.89 -8.89 -9.12| 85.65 10.28
Number of Breaks 5 5 5
10-Year -9.57 -9.62 -9.61 -9.72| 45.47 10.28
Number of Breaks 5 5 5
15Year -9.68 -9.73 -9.73 -9.86| 65.04 11.00
Number of Breaks 5 5 4
20-Year -9.98 -10.03 -10.02 -10.10| 44.95 11.00
Number of Breaks 5 5 4
30-Year -9.79 -9.84 -9.83 -9.94| 46.91 10.28
Number of Breaks 5 5 5
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Table 2.8:Confidence interval of breaks

Below are the confidence intervals for each break from thé®Baon methodology. The model

selected and shown is the model with breaks only in the constant term from January 1, 2003 to

March 4, 2011. All results are more significant than required at the 1% level using Bai and

Perronds asymptotic critical nteddsiolobws: The func
ONwNi ¢fwd T 00 wwNi € ww

Panel A: Tenors 1 through 5

1-Yeartaxproxy Number of Breaks= 5
Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean
Initial 0.495 0.456 0.910
8/19/2003  8/19/2003 8/22/2003 0.856 0.011 0.866
4/27/2004  4/26/2004 5/17/2004 0.021 0.971 0.724
12/15/2008 11/12/2008 12/16/2008 0.418 0.517 0.865
3/19/2009 3/18/2009 6/17/2009 0.011 0.986 0.786
8/18/2010 7/27/2010 8/19/2010 0.496 0.458 0.915
2-Yeartaxprox/ Number of Breaks= 5
Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean
Initial 0.535 0.372 0.852
3/26/2003  3/25/2003 7/25/2003 0.003 0.995 0.600
9/12/2008  6/3/2008 9/12/2008 0.128 0.842 0.810
12/15/2008 11/14/2008 12/18/2008 0.547 0.382 0.885
3/3/2009 3/2/2009  4/13/2009 0.062 0.923 0.805
8/11/2010 3/30/2010 8/12/2010 0.343 0.608 0.875
3-Yeartaxproxy Number of Breaks= 5
Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean
Initial 0.005 0.993 0.714
9/12/2008 6/27/2008 9/15/2®M8 0.130 0.840 0.813
12/15/2008 12/4/2008 12/18/2008 0.538 0.401 0.898
3/12/2009 3/11/2009 3/27/2009 0.066 0.917 0.795
8/11/2010 7/20/2010 8/12/2010 0.452 0.475 0.861
11/25/2010 11/17/2010 12/9/2010 0.373 0.557 0.842
4-Yeartaxproxy Number of Breaks= 3
Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean
Initial 0.005 0.994 0.780
9/12/2008 7/30/2008 9/15/2008 0.135 0.836 0.823
12/15/2008 11/28/2008 12/18/2008 0.550 0.398 0.914
3/13/2009 3/12/2009  4/9/2009 0.035 0.956 0.802
5-Yeartaxprox/ Number of Breaks= 3
Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean
Initial 0.005 0.993 0.738
9/12/2008  4/7/2008 9/15/2008 0.079 0.905 0.830
12/15/2008 11/21/2008 12/17/2008 0.543 0.413 0.925
3/18/2009 3/17/2009 4/15/2009 0.034 0.958 0.805
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Panel B: Tenors 7 through 30

7-Yeartaxproxy

Number of Breaks= 5

Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean
Initial 0.033 0.959 0.793
6/1/2004 5/26/2004  6/2/2004 0.767 -0.029 0.745
8/18/2004 8/13/2004 8/23/2004  0.015 0.979 0.714
12/15/2008 12/8/2008 12/16/2008  0.518 0.446 0.935
3/31/2009 3/30/2009 5/13/2009  0.032 0.960 0.800
11/24/2010 7/16/2010 11/25/2010  0.693 0.158 0.823
10-Yeartaxproxy Number of Breaks= 5
Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean
Initial 0.006 0.991 0.667
9/10/2008  7/3/2008 9/11/2008  0.151 0.816 0.821
11/19/2008 10/10/2008 11/20/2008  0.520 0.453 0.951
4/1/2009 3/31/2009 6/26/2009  0.126 0.850 0.840
7/8/2009 6/18/2009 7/17/2009  0.246 0.693 0.801
9/18/2009 9/15/2009 10/16/2009  0.017 0.979 0.810
15-Yeartaxproxy Number of Breaks= 4
Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean
Initial 0.008 0.990 0.761
9/5/2008 7/21/2008  9/8/2008 0.124 0.852 0.838
11/19/2008 10/24/2008 11/20/2008  0.621 0.368 0.983
4/1/2009 3/31/2009 4/28/2009  0.139 0.838 0.858
7/14/2009  7/6/2009  9/2/2009 0.015 0.982 0.806
20-Yeartaxproxy Number of Breaks= 4
Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean
Initial 0.007 0.990 0.775
9/5/2008 7/17/2008  9/8/2008 0.084 0.904 0873
11/20/2008 10/20/2008 11/21/2008  0.554 0.449 1.005
4/1/2009 3/31/2009 4/15/2009  0.132 0.848 0.866
7/24/2009 7/16/2009  9/4/2009 0.012 0.986 0.840
30-Yeartaxproxy Number of Breaks= 5
Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean
Initial 0.008 0.989 0.727
9/10/2008  7/9/2008 9/11/2008  0.107 0.878 0.877
11/19/2008 10/29/2008 11/20/2008  0.580 0.440 1.036
4/1/2009 3/31/2009 4/23/2009  0.127 0.859 0.901
7/8/2009 6/29/2009 7/28/2009  0.164 0.806 0.845
11/4/2009 10/28/2009 12/11/2009  0.010 0.989 0.909
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Table 2.9: Magnitudes of breaks

For each breakpointve give the level of the fixed leg of the fixéaor-floating swap as well as

the percentagef-LIBOR of the basis swap used as taxproxy The differences shown are for

the change ireach time series for the 95% confidence interval around the break date. The
taxproxymoves opposite the implied marginal tax rae a 10% increase in thaxproxyis a

10% decrease in the implied marginal tax rate.

Panel A: Tenors 1 and 2

1-yeartaxproxy

2-yeartaxproxy

Breakpoint Lower 95% Upper 95% Diff. Breakpoint Lower 95% Upper 95% Diff.
8/19/2003 8/19/2003 8/22/2003 3/26/2003 3/25/2003 7/25/2003
taxproxy= 89.1% 87.1% -2.0% taxproxy= 85.5% 111.5% 26.0%
LIBOR= 1.378 1.448 0.00 LIBOR= 1.905 1.708 -0.197
MSI= 1.227 1.261 0.033 MSI= 1.629 1.515 0.276
4/27/2004 4/26/2004 5/17/2004 9/12/2008 6/3/2008  9/12/2008
taxproxy- 85.7% 82.6% -3.1% taxproxy- 71.2% 69.2% -2.0%
LIBOR= 1.773 2.024 0.251 LIBOR= 3.256 3.178 -0.078
MSI= 1.520 1.672 0.153 MSI= 2.317 2.198 -0.119
12/15/2008 11/12/2008 12/16/2008 12/15/2008 11/14/2008 12/18/2008
taxproxy= 75.0% 80.6% 5.7% taxproxy= 79.3% 94.5% 15.1%
LIBOR= 1.986 1.403 -0.583 LIBOR= 2.380 1.528 -0.852
MSI= 1.489 1.132 -0.357 MSI= 1.888 1.443 -0.445
3/19/2009 3/18/2009 6/17/2009 3/3/2009  3/2/2009  4/13/2009
taxproxy= 92.2% 72.5% -19.7% taxproxy- 86.2% 75.6% -10.6%
LIBOR= 1.260 0.961 -0.300 LIBOR= 1.577 1.460 -0.117
MSI= 1.162 0.697 -0.466 MSI= 1.360 1.104 -0.257
8/18/2010 7/27/2010 8/19/2010 8/11/2010 3/30/2010 8/12/2010
taxproxy- 73.3% 87.6% 14.3% taxproxy- 79.9% 81.8% 2.0%
LIBOR= 0.545 0.431 -0.115 LIBOR= 1.214 0.735 -0.480
MSI= 0.400 0.377 -0.023 MSI= 0.970 0.601 -0.369
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Panel B: Tenor8 and 4

3-yeartaxproxy

4-yeartaxproxy

Breakpoint Lower 95% Upper 95% Diff. Breakpoint Lower 95% Upper 95% Diff.
9/12/2008 6/27/2008 9/15/2008 9/12/2008 7/30/2008 9/15/2008
taxproxy= 72.7% 74.7% 2.0% taxproxy= 72.0% 75.2% 3.2%
LIBOR= 3.896 3.041 -0.855 LIBOR= 4.090 3.281 -0.809
MSI= 2.831 2.271 -0.560 MSI= 2.943 2.467 -0.476
12/15/2008 12/4/2008 12/18/2008 12/15/2008 11/28/2008 12/18/2008
taxproxy- 84.9% 95.0% 10.1% taxproxy- 90.9% 93.9% 3.1%
LIBOR= 2.195 1.724 -0.472 LIBOR= 2574 1.889 -0.685
MSI= 1.863 1.637 -0.226 MSI= 2.339 1.775 -0.565
3/12/2009 3/11/2009 3/27/2009 3/13/2009 3/12/2009 4/9/2009
taxproxy= 88.8% 86.4% -2.5% taxproxy= 92.6% 82.9% -9.7%
LIBOR= 2.034 1.763 -0.271 LIBOR= 2.241 2.205 -0.036
MSI= 1.8065 1.5225 -0.284 MSI= 2.074 1.827 -0.247
8/11/2010 7/20/2010 8/12/2010

taxproxy- 83.0% 83.8% 0.8%

LIBOR= 1.162 1.053 -0.109

MSI= 0.964 0.882 -0.082

11/25/2010 11/17/2010 12/9/2010

taxproxy= 86.5% 84.3% -2.1%

LIBOR= 0.979 1.217 0.238

MSI= 0.847 1.027 0.180
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Panel C: Tenors 5 and 7

5-yeartaxproxy

7-yeartaxproxy

Breakpoint Lower 95% Upper 95% Diff. Breakpoint Lower 95% Upper 95% Diff.
9/12/2008 4/7/2008  9/15/2008 6/1/2004  5/26/2004 6/2/2004
taxproxy= 78.6% 75.9% -2.8% taxproxy= 77.2% 68.5% -8.7%
LIBOR= 3.507 3.453 -0.054 LIBOR= 4.743 4.828 0.085
MSI= 2.758 2.621 -0.138 MSI= 3.663 3.308 -0.355
12/15/2008 11/21/2008 12/17/2008 8/18/2004 8/13/2004 8/23/2004
taxproxy= 972% 91.0% -6.3% taxproxy= 75.6% 75.1% -0.5%
LIBOR= 3.010 2.072 -0.938 LIBOR= 4.284 4.327 0.043
MSI= 2.927 1.885 -1.043 MSI= 3.239 3.250 0.011
3/18/2009 3/17/2009 4/15/2009 12/15/2008 12/8/2008 12/16/2008
taxproxy- 91.6% 83.3% -8.4% taxproxy- 87.4% 90.3% 2.9%
LIBOR= 2.598 2.277 -0.321 LIBOR= 2.864 2.247 -0.617
MSI= 2.381 1.897 -0.485 MSI= 2.502 2.028 -0.474
3/31/2009 3/30/2009 5/13/2009
taxproxy= 92.1% 85.1% -7.0%
LIBOR= 2.588 2.866 0.279
MSI= 2.384 2.438 0.055
11/24/2010 7/16/2010 11/25/2010
taxproxy= 85.1% 70.8% -14.3%
LIBOR= 2.452 2.338 -0.114
MSI= 2.087 1.656 -0.431
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Panel D: Tenors 10 and 15

10-yeartaxproxy 15-yeartaxproxy

Breakpoint Lower 95% Upper 95% Diff. Brealkpoint Lower 95% Upper 95% Diff.
9/10/2008 7/3/2008  9/11/2008 9/5/2008  7/21/2008 9/8/2008
taxproxy= 73.4% 75.3% 1.9% taxproxy= 111.1% 111.3% 0.2%
LIBOR= 4.736 4231 -0.505 LIBOR= 3.405 4474 1.070
MSI= 3.477 3.188 -0.290 MSI= 3.783 4980 1.198
11/19/2008 10/10/2008 11/20/2008 11/19/2008 10/24/2008 11/20/2008
taxproxy= 85.6% 101.4% 15.8% taxproxy= 80.7% 93.7% 13.0%
LIBOR= 4.423 3.143 -1.280 LIBOR= 4,191 3.560 -0.631
MSI= 3.788 3.188 -0.600 MSI= 3.382 3.336 -0.046
4/1/2009  3/31/2009 6/26/2009 4/1/2009  3/31/2009 4/28/2009
taxproxy= 95.7% 80.5% -15.2% taxproxy- 98.5% 86.4% -12.2%
LIBOR= 2.864 3.742 0.879 LIBOR= 3.155 3.446 0.291
MSI= 2.740 3.013 0.274 MSI= 3.109 2.977 -0.133
7/8/2009  6/18/2009 7/17/2009 7/14/2009 7/6/2009 9/2/2009
taxproxy= 81.2% 81.9% 0.8% taxproxy= 85.4% 80.8% -4.7%
LIBOR= 4.093 3.886 -0.207 LIBOR= 4.020 3.827 -0.193
MSI= 3.323 3.185 -0.139 MSI= 3.434 3.090 -0.344
9/18/2009 9/15/2009 10/16/2009

taxproxy= 79.5% 80.5% 1.0%

LIBOR= 3.667 3.598 -0.069

MSI= 2.917 2.898 -0.019
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Panel E: Tenors 20 and 30

20-yeartaxproxy 30-yeartaxproxy
Breakpoint Lower 95% Upper 95% Diff. Breakpoint Lower 95% Upper 95% Diff.
9/5/2008  7/17/2008 9/8/2008 9/10/2008 7/9/2008 9/11/2008
taxproxy= 77.5% 77.3% -0.2% taxproxy= 77.3% 79.7% 2.4%
LIBOR= 5.033 4.564 -0.469 LIBOR= 4.895 4563 -0.332
MSI= 3.903 3.528 -0.375 MSI= 3.782 3.635 -0.147
11/20/2008 10/20/2008 11/21/2008 11/19/2008 10/29/2008 11/20/2008
taxproxy= 87.8% 100.1% 12.3% taxproxy= 85.7% 101.0% 15.3%
LIBOR= 4.382 3.500 -0.882 LIBOR= 4.272 3.278 -0.995
MSI= 3.850 3.505 -0.345 MSI= 3.660 3.311 -0.349
4/1/2009  3/31/2009 4/15/2009 4/1/2009  3/31/2009 4/23/2009
taxproxy- 100.7% 90.0% -10.7% taxproxy- 103.7% 93.0% -10.8%
LIBOR= 3.204 3.292 0.088 LIBOR= 3.237 3.409 0.172
MSI= 3.225 2.962 -0.264 MSI= 3.358 3.169 -0.189
7/24/2009 7/16/2009 9/4/2009 7/8/2009  6/29/2009 7/28/2009
taxproxy= 86.0% 82.1% -3.9% taxproxy= 89.1% 85.8% -3.3%
LIBOR= 4.171 4.066 -0.105 LIBOR= 4.115 4359 0.244
MSI= 3.586 3.338 -0.248 MSI= 3.665 3.739 0.074
11/4/2009 10/28/2009 12/11/2009
taxproxy= 84.2% 81.9% -2.3%
LIBOR= 4,172 4.338 0.166
MSI= 3.513 3.552 0.039
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Table 2.10: Ratel municipal defaults

Shown below are the number of defaults by issuer and type from 1970 to 2011. This chart is
taken from Appleson, et al. (2012).

Number of Defaults
Mo ody S&P  Number of Issuers Size of Market

Municipal 71 47 54,486  $3.7 trillion
Corporate 1,784 2,015 5,656  $7.8 trillion
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Table 2.11: Taxexempt bond issuances

Shown below are the number and amount of issuances fax@mpt governmental bonds.
Private activity bonds are not included because they are still subject to theTASe records
are taken from irs.gov.

Year Number of Issues Amount of Issues (in millions

2003 28085 $353,994
2004 25889 $330,413
2005

2006 25226 $319,394
2007 25253 $379,326
2008 24275 $334,373
2009 22363 $340,658
2010 21861 $293,625
2011 15718 $232,544
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Table 2.A.1: McLeod-Li test

Shown below are results from the McLebidtest for the presence of nonlinearities. The Box
Jenkins Methodology selected an AR(1) model for each tenor for the model of the mean. Five
lagged squared residuals finahe model of the mean are used for the test. The current squared
residual is significantly related to lagged observations for each tenor.-Sta¢igtic is shown for

the null hypothesis that all the coefficients on lagged squared residuals are ezxpral. tdhe
corresponding fvalues are also shown.

Tenor F-stat p-value

l-year 40.592 0.000
2-year 53.458 0.000
3-year 39.218 0.000
4-year 54.733 0.000
5-year 32.623 0.000
7-year 212.609 0.000
10year 15.555 0.000
15year 103.206 0.000
20-year 73811 0.000
30-year 112.336 0.000
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Table 2.A.2: Bush tax cut breaks

Below are selected results from the {Pa&rron methodology performed with an optimal lag
length of 1. Model selection between the breaks in the constanterAR or both was done
through the use of the BIC function. The model selected and shown is the model with breaks in
the constant and AR term from April 20, 2001 to January 1, 2004P&aon critical values are
shown next t o t h-statisiceThee farctormhl famo chbé EEresehted as
follows:

ONwNi ¢fwd T o00wwNi € ww

Structural Breaks BIC(p) ‘

N-Yeartaxproxy No Breaks Constant AR(1) Term Both F(m) 0.01 Sig

1-Year -6.38 -6.42 -6.38 -6.57| 23.28 10.28
Number of Beaks 4 0 5
2-Year -6.92 -7.11 -7.05 -7.41| 84.57 12.06
Number of Breaks 5 5 3
3-Year -7.08 -7.26 -7.15 -7.61| 254.37 16.64
Number of Breaks 5 5 1
4-Year -7.14 -7.33 -7.25 -7.67| 255.72 16.64
Number of Breaks 5 5 1
5-Year -9.62 -9.63 -9.62 -9.67| 10.12 10.28
Number of Breaks 4 0 5
7-Year -7.20 -7.46 -7.40 -7.72| 249.57 16.64
Number of Breaks 5 5 1
10-Year -10.10 -10.11 -10.10 -10.15| 11.55 11.00
Number of Breaks 5 0 4
15Year -10.17  -10.18 -10.17 -10.23| 11.09 10.28
Number of Breks 5 0 5
20-Year -10.11  -10.12 -10.11 -10.17| 14.20 12.06
Number of Breaks 5 0 3
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Table 2.A.3: Confidence interval of Bush tax cuts

Below are the confidence intervalGl, for each break from the B&erron methodology. The
model selected and shaws the model with breaks only in the constant term from April 20,
2001 toJanuary 1, 2004. All results are more significant than required at the 5% level using Bai
and Perrondés asymptotic critical values.

Panel A: Tenors 1 through 5

1-Yeartaxproxy

Number of Breaks

Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean
Initial 0.253 0.675 0.777
7/13/2001 7/11/2001  9/3/2001 0.648 0.046 0.680
9/21/2001 9/18/2001 10/3/2001  0.127 0.843 0.810
2/4/2002 12/6/2001 2/15/2002  0.535 0.265 0.728
6/18/2002 6/17/2002 7/17/2002  0.140 0.845 0.901
8/19/2003 8/13/2003 8/26/2003  0.909 -0.050 0.866
2-Yeartaxproxy Number of Breaks
Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean
Initial 0.674 -0.023 0.659
8/3/2001  8/1/2001  8/7/2001 0.0 0.929 0.740
1/31/2002 1/30/2002  2/6/2002 0.654 0.084 0.714
4/11/2002 4/10/2002 4/12/2002  0.013 0.984 0.843
3-Yeartaxproxy Number of Breaks
Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean
Initial 0.682 -0.022 0.667
8/3/2001  8/2/20@  8/7/2001 0.014 0.983 0.789
4-Yeartaxproxy Number of Breaks
Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean
Initial 0.688 -0.021 0.674
8/3/2001  8/2/2001  8/6/2001 0.014 0.982 0.777
5-Yeartaxproxy Number of Breaks
Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean
Initial 0.692 -0.003 0.690
9/17/2001 9/13/2001 1/17/2002  0.027 0.962 0.695
1/10/2002 12/6/2001 1/18/2002  0.260 0.639 0.721
3/21/2002 3/20/2002 4/24/2002  0.001 0.999 1.757
3/12/2003  3/7/2003 3/13/2003  0.6M 0.174 0.821
5/21/2003 5/20/2003 7/18/2003  0.025 0.969 0.806
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PanelB: Tenors 7 through@

7-Yeartaxproxy

Number of Breaks

Breakpoint Lower 95%

Upper 95% Constant AR(1) Term LR Mean

Initial 0.710 -0.022 0.695
8/6/2001  8/3/2001  8/7/2001 0.015 0.980 0.769
10-Yeartaxproxy Number of Breaks
Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean
Initial 0.622 0.155 0.736
11/13/2001 11/13/2001 11/18/2002  0.149 0.786 0.696
1/22/2002 1/22/2002 5/28/2002  0.000 1.000 -14.856
3/3/2003 2/17/2003  3/4/2003 0.517 0.355 0.801
5/12/2003  5/9/2003 9/24/2003  0.032 0.959 0.786
15-Yeartaxproxy Number of Breaks
Breakpoint Lower 95% Upper 95% Constant AR(1) Term LR Mean
Initial 0.748 -0.011 0.740
9/4/2001  9/3/2001 11/23/2001  0.064 0.920 0.799
11/13/2001 9/12/2001 11/22/2001  0.172 0.761 0.718
1/22/2002 1/21/2002 4/16/2002  0.004 0.995 0.819
3/3/2003  2/6/2003  3/4/2003 0.551 0.314 0.803
5/12/2003  5/9/2003 8/12/2003  0.021 0.973 0.785
20-Yeartaxproxy Number of Breaks
Breakpoint Lower 986 Upper 95% Constant AR(1) Term LR Mean
Initial 0.758 -0.011 0.749
8/27/2001 8/24/2001 11/2/2001  0.063 0.922 0.808
11/13/2001 9/28/2001 11/26/2001  0.188 0.745 0.737
1/22/2002 1/211/2002 3/20/2002  0.014 0.982 0.792
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Figure 2.1: Time series of thefixed legs of the lyear svaps

The graph shown below is theygar LIBOR swap rate and theygar MSI swap rate over the entire range of our data. The lighter
line that is on top is the LIBORased swap. They e@mry with a stationary proportional spread
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Figure 2.2 Impulse response dinctions

Table 2.6 shows our results for an ECM. Each of these models implies an impulse response
which is shown below. The time steps are in days. It is important to note that several of the terms
are not statisticafl significant.

Panel A: Tenors 1 through 3
Impulse Response Functions (1 Year)

Shocks to the One Year LIBOR Swap Shocks to the One Year MS Swap
aon — aos
anzs -| aoi6 -
p— QoM +
aoe 4
a0 o
Qo +
Qs
[T
ages
Qe -
Qo | oo
aez3 ao® 1
T T T T T T T T T T T T T T T T T T T T T T T 1 Qe T T T T T T T T T T T T T T T T T T T T T 7T
612 34567838 9 VHRDBUBEEITHBVAARD 01234667383 VHEBMUMEETBBEDIAZZA
Impulse Response Functions (2 Year)
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Panel B: Tenors 4 through 7

Impulse Response Functions (4 Year)

Shocks to the Four Year MSI Swap

Shocks to the Four Year LIBOR Swap
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Impulse Response Functions (5 Year)

Shocks to the Five Year MSl Swap

Shocks to the Five Year LIBOR Swap
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Impulse Response Functions (7 Year)

Shocks to the Seven Year MSI Swap

Shocks to the Seven Year LIBOR Swap
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Panel C Tenors 10 througl0

Impulse Response Functions (10 Year)

Shocks to the Ten Year MSI Swap

Shocks to the Ten Year LIBOR Swap
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Impulse Response Functions (15 Year)

Shocks to the Fifteen Year MSI Swap

Shocks to the Fifteen Year LIBOR Swap

Impulse Response Functions (20 Year)

Shocks to the Twenty Year MSI Swap

Shocks to the Tw enty Year LIBOR Swap
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Panel D: Tenor 30

Impulse Response Functions (30 Year)

Shocks to the Thirty Year MSI Swap

Shocks to the Thirty Year LIBOR Swap
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Figure 2.3: Time series ofmoney market accounts

The graph shown below gives the time series of weeklyeggée money market funds. The blue
line is taxable money market funds, and the red line ixa&xnpt money market funds.
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Figure 2.4: Time series of the proportion of taxexempt money market acounts

The graph shown below gives the time series eftoportion of tasexempt money market funds invested.
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Figure 2.A.1: Time series oftaxproxyduring the Bush Tax Cuts

The graph below shows theygar and 28/eart a x p $. ©he ligher levels in the second half of the time period are consistierat wi
lower marginal tax rate.
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CHAPTER3: ASYMMETRIC RELATIONSHIPSBETWEENIMPLIED AND REALIZED
VOLATILITY

3.1. Introduction

There has always been a disconnect between expectations and reality. If unbiased, these
errors would be evenly distributestound implied expectations, but with a number of financial
time series this is not the case. This disconnect has implications about risk preferences.
Researchers have found a number of clever ways to get around this issue. For example, in much
of derivatves pricing, the endogenous relationship between risk and return is circumvented
through the use of riskeutral space. Financial research has primarily focused on the first
statistical moment of datasets in the form of return, but there is evidencéh¢h&duman
behaviors that price risk in returns also price risk in implied volatilities. Andersen and
Bondarenko (2007) find that implied volatility is almost always higher than realized volatility,
RV. In reference to this, Ang, et al. (2006) remarks thas almost certainly the case that
implied and rebzed series behave differentlin this instance because implied volatility will
have some risk premium embedded in it. The AP
phenomenon. In order to gaileeper insight into the relationship between implied and realized
volatility, | use the CBOE Volatility Index, VIX, to proxy for implied volatility along with its
corresponding realized volatility.

There is a long and rich history of derivatives markatthough forwards and futures

contracts have traded consistently for hundreds of years, options have had a more sporadic
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history. Investors can easily trade on whether prices will go up or down, but sometimes investors
wish to trade on whether a series di@es more or less volatile. This trading could be
speculative or could represent a desire to hedge changes in volatility. A number of trading
strategies that provide liquidity are vulnerable to large price swings. In order to trade on
volatility, some typeof asymmetric instrument must be trading. One of the earliest successful
options traders was Rsmll Sage who maintained a geedough reputation to facilitate a well
functioning options market. Since organized options exchanges did not exist, Sagentpuld
maintain his business by consistently honoring his financial contracts. He also developed one of
the most common volatility trading strategies the strddarrow and Chatterjea, 2013).
Although the options trading business was wildly profitabldy dhose with an enormous
amount of wealth and excellent reputations c
Black-ScholesMerton that options trading once again became popular.

The advent of the BlaescholesMerton Option Pricing Model madoption markets
viable. The Chicago Board Options Exchange opened on April 26, 1973, and trading on
volatility once again became a possibility for investors. A liquid options market allowed
investors to trade on a number of outcotnexluding volatility. Cash settlement was also an
important innovation for these markets because it allowed investors to trade on an index without
needing the underlying. In 1983, cash settled options on stock indices began trading on the
CBOE. This allowed investors teasily trade on the volatility of large portions of the stock
market and paved the way for further innovation.

Brenner and Galai, in 1989, proposed the idea of an option that would allow investors to

hedge changes in volatility (formalized in a paper publishedi993). Whaley (1993), in that

®He even went by the nickname A0l d Straddl eo.
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same issue ofhe Journal of Derivativedaid out an argument for an index that would track
market volatility along with futures and options. He argued that this would allow option market
makers to hedge their volatility pasure much more cheaply than with options strategies. These
indiceswould allow futures contracts to be written on volatility, giving an almost costless means
for hedging volatility.

The original VIX, which is now called the VXO, was a weighted averdgie one
month implied volatility taken from several-éte-money index options. These options were
written on the S&P 100 because, at the time, these index options were the most widely traded,
and therefore offered the most upo-date price informationin order to better match recent
market conditions, the VIX was changed to be based on the S&P 500. Instead of a weighted
average, the VIX in its current formdaesigned to be a 3fay squareoot of an implied variance
swap to allow for a term structueé volatility®. The options used to compute this index have also
been changed to include a broader number cbbtltemoney options. These options are often
used by hedgers under widely used strategies like portfolio insutaNog.only has this index
provided a useful economic indicator and hedging instrument, the VIX and VXO have also
facilitated a number of studies on the dynamics of volatility.

The VI X index has provided an wunprecedent
volatility expectations As a measure of volatility, the VIX should have a number of unique
characteristics. The VIX and realized volatility are bounded from below by zero. Introspection

reveals that neither of these series should trend on towards infinity, but there is nd bpurat

% In the basic BlaciScholesMerton Qption Pricing Model the volatility increases by the square
root of the time to maturity. The term structure of volatility allows for the influence of specific
events that are likely to affect volatility like Federal Reserve meetings.

10 Further details andrguments for this change can be found in Whaley (2009).
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on their realizations. Although previous papers use a number of horse races to select among a
wide array of time series models (Chen, 2002; Christensen and Hansen, 2002; Ang et al., 2006;
Hung et al., 2009; and Kambourdisal., 2013 among manyhatrs),| focus exclusively on a set

of threshold and smooth threshold autoregressive models to characterize these series.

My results reinforce several common findings in the literature. Although previous papers
have mixed results on the order of integratfor the VIX, | find that the series is stationary
under a number of different specifications. The data does show a number of large positive spikes
that quickly revert back to normal levels indicating asymmetric behavior. My tests indicate that
the seris has nonlinear and threshold effects. Though previous papers use basic threshold
effects, they do not test for a wide variety of threshold behaviors. This study is set apart because
| use a wide variety of STAR models to characterize the VIX in levels.

These findings present an important question for risk managers. Based on my results it is
not sufficient to use simply the most recent level of the VIX as a forwatdng indicator. My
results imply that there is a complex relationship between the ViXeaided volatility. Of the
information contained in the VI X, a | arge por
volatility. The presence of threshold effects also means that the normal approach is flawed. There
are times when almost all ofedhinformation necessary to forecast the VIX is contained in the
previous 30 days6 RV. Using the previous daybo
to this common approachfind that the VIX is stationary and follows an ESTAR process.

Theremander of thischapteris organized as followssection3.2 discusses the relevant
literature in sction3.3, | discussmy data, hypothesis development, and methodgleggtion
3.4 reports the empirical findingsection 3.5 discusses severanplicatons; and sction 3.6

presentsny conclusions.
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3.2. Literature Review

There are two major lines of research that have characterized our understanding of
implied volatility series. The first is the research that looks at the time series behavior eflimpli
volatility and realized volatility. This research depends primarily on time series econometrics to
characterize these series. The second area of research develops option pricing models that use the
VIX or related index as the underlying. For these m®deime assumptions are made about the
stochastic process of the VIX. Empirical testing of these models and their correspondence, or
lack thereof, to observed prices reveals information about the underlying series.

Ang et al. (2006) mention that VIX shoulibt be a perfect measure or forecast of
realized volatility because if it were, then it would need to have a zero risk premium. They also
use the VXO to examine the influence of aggregate risk on thegeotisn of stock returns and
find that stocks wh high sensitivity to the VXO have lower average returns. Several papers
point to the desire of investors to hedge volatility changes as they are related to investment
opportunities (Campbell, 1993; Campbell, 1996; Chen, 2002). These papers show that an
increase in volatility means that investment opportunities have declined. Under these models
risk-averse investors would prefer a hedging instrument that paid positive returns when volatility
increases.

Several assumptions lay the foundation for time segesometrics, the core of which is
that the data generating process is consistent over time (or for each sub period of time). Using
data that started before the US Civil War, Schwert and Pagan (1990) find that over several
distinct periods of time, theatk market is not covariance stationary. Correspondingly, Schwert
(1989) finds that denonthly trended moving average models are not sufficient due to concerns

about covariance stationarity. | follow a number of papers that use nonlinear models to address
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this issue. More recently, Schwert (2011) uses volatility data for a number of decades to put the
recent financial crisis in perspective. He argues that although there were long periods of
persistent high stock market volatility during the Great Deprestierpattern that appears since
then is strong mean reversion. This is consistent with myraoittests that find the VIX and its
corresponding realized volatility to be stationary.

The forecasting and, particularly, the prediction of increased stacketvolatility have
attracted a lot of research. Christensen and Hansen (2002) use implied volatilities to construct a
forecasting series for realized return volatility. They use implied call, implied put, and historical
return volatility. They show thaimplied volatility is an efficient forecast of realized return
volatility. Hung, et al. (2009) use the asymmeftElwstenJagannathafRunkle (1993) GARCH
model to compare one step ahead forecasts and find that combining the VIX with the GJR
GARCH model wa preferable for volatility forecasting. This is similar in form to the threshold
models | preserit Similarly, Kambourdis, et al. (2013) use a number of GARCH and implied
volatility models to compare their ability to forecast stock market volatility. Tirey that
implied volatility models contain some additional information not found in GARCH models.
They also note that the presence of asymmetric effects significantly improves the performance of
their models.

Adhikari and Hilliard (2014) use the VIX andXO to look at the Granger Causality
between each of these series and its corresponding realized volatility. They find that although

these series are designed to be forward looking, they depend substantially on the previous

11 The GJRGARCH model can be represented as follows:
. Q1. nl T 0O Q
0 T'QTQ T
p QTQ s
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mont hés r eal iez @ath set entlsaight dfter thg majoMviolatility spike in October
2008. This spike seems to cause their unit root test to fail to reject the hypothesis of a unit root.
In addition to tests on the properties of the time series of the VIX, the VIX optiomg
literature gives insight into the stochastic properties of these second order moment series.

A recent literature has developed to price VIX derivatives. Since the VIX provides an
important market index for risk exposure, a number of derivativésu®it as the underlying
have started trading. Wang and Daigler (2009) do empirical testing of a number of option pricing
models by comparing their predicted option prices to the current option prices. They find that
simpler models work better, but no d& is consistently accurate. A number of the stochastic
processes underlying these option pricing models are mean reyefiity is consistent with
my results.

Mencia and Sentana (2013) show the validity of a number of VIX option pricing models
by usirg VIX option and futures data. Because many of the models use a defined stochastic
processthey show a number of ways that the time series of VIX can be modeled. Many of their
models assume that the underlying series is stationary without a unithieas consistent with
my findings. My model of the VIX differs from theirs because instead of looking at the
nonlinearity present in the VIX data as lenmm mean reversion to a changing leng meanl
use a threshold autoregressive setup. This allows tonemodel the VIX in several
characteristically different regions.

My research is set apart in several ways. Although a number of previous papers have
found evidence of nonlinear and threshold effects, | extend this approach to smooth transition
models. lalso allow each of my series to have an independent srraoition autoregressive

(STAR) form, and | further show that this setup is statistically significant in pretesting.
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Additionally, much of the previous literature has focused on our ability tigbreuture stock
market volatility. | look at predicting the VIX or future implied volatility. This is the cost of
purchasing options and is more applicable for risk managers as they consider the expected future

cost of shorterm asymmetric hedging steagjfies.

3.3. Methodology

The historical VI X and VXO data 1is readi
website. | use daily closing prices to develop my testable dataset. The underlying for the VIX is
the S&P 500; the underlying for the older VXO is th&PS100. Daily closing prices for these
two indices are readily available from a number of sources, and | pull them onlin¥ &lood
Finance Although the data is easy to get, there are some important sampling issues. In order to
model the influence of edized volatility on VIX, | use the realized volatility of the matching
forwardlooking time period. The VIX is the square root of the fixed leg of a par variance swap
over the next 30 days as implied by a number of options assuming a term structuagilaf/vol

In order to appropriately match the realized volatility to the VIX, | take the VIX closing
price and label it VIX(t). Starting the next day, | calculate the realized return volatility using
closing prices going forward 30 calendar days. | laliel RV(t). | then take the closing VIX on
the last trading day used in the realized volatility calculation and label this VIX(t+1). The next
trading dayods closing price is the first wused
looking, there isnot an overlap in using the closing price and VIX measurement from the same

day. It is important to space out samples of the VIX to match my measure of realized volatility.
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Even though the VIX has daily meaningful observations, the realized volatilitgureeaoes
not'2,

The sample statistics are shown below. The mean and median of the volatility indices are
consistently higher than the realized volatility that they are designed to fonebhadt is noted
by Andersen and Bondarenko (2007). The rangekeoWoblatility indices are smaller than their
corresponding realized volatility figures. This follows my observation that at the extremes, the
lagged VIX has little influence in forecasting itself. Correspondingly, the standard deviation for
the realized viatility measures is consistently higher for the volatility indices (this would be a
fourth order statistic in relation to stock returns). Each time series is positively skewed which
could be explained by each series being unbounded above. The serigsoaldaigh levels of
excess kurtosis which is consistent with having a large number of small movements punctuated
by a few large movements.

The rejection of the JargiBera statistic is similar to other financial datasets. A
decomposition of this measumeof shown) demonstrates that this rejection is not exclusively due
to just the skewness or kurtosis. Both statistics drive this measure to the rejection level. This also
gives further evidence for the @bichler and Longstaff (1996) derivatives pricing dals
which use the CIR model for the stochastic process of VIX. The autocorrelations are low for
financial price data, and | test for the presence of a unit root as a robustness test. The cross
correlations indicate that these measures of volatility ateidenmtical in their information

content.

12 Daily rolling windows would introduce tremendous false serial correlation because each day
one observation would change in my rolling sample at a time. This would be further exacerbated
by the presence of weekends.
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The main hypothesis is that there are significant smooth threshold autoregressive effects
in the VIX and its related series. | begin by testing each series for stationarity using ADF tests
and EndersSranger unitroot tests to allow for asymmetric adjustment. | show that the model
specification for forecasting the VIX depends in large part on recent realized volatility and
|l agged VI X. Il test, initially, with ieancBshar po
find, I use Ter2svirtaods (1994) t est for del
These pretests lay the foundation for the following model:

OOLT T ®0® E 1 @wO0® | Yo E | Yo
VOON ® OO0 E oo0d dYe E dYo o -
where,
T "QuwOw p

The coefficientst, bi, a;, andb; are the coefficients estimated for the VIK.the above equation
AR(p) models are present for the lagged VIX and lagged realized volatility, RV. The coefficients
are jointly estimated in each regime. Hgf¥IX:.q) is the transition function, andlis the delay
parameter. | define the transition function in one offtlewing ways:
For an LSTAR model,

Q AN OIA p AGBD 00Od ©
For an ESTAR model,

Q W0d p AGE ©®O0H ©

Hereois a measure of how fast the transition function moves between 0 and 1. The estimated
coefficient ¢ is the center of the transition regiomtrospection shows that even if the most
recent 30 day realized volatility is he forwardlooking marketdriven VIX would certainly not

be 0. | also propose that the information contained in the ViK recent RV depends on the
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previous observations of the VI X and RV in th
on the previous observations of the VIX and RV. Congruous with this observation, I find that the

level of mean reversion for the VIX regime dependent.

3.4. Empirical Findings

A number of previous papers have wrestled with the question of whether or not the time
series of VIX and realized volatility are stationary (Wang and Daigler, 2009). | use stationary as
oppose to trend statiary because there should not be any persistentteyngtrends in either of
these terms. Ang et al. (2006) argue that although the similar VXO series has high
autocorrelationit is likely to be stationary. Adhikari and Hilliard (2014) find that the Mixe
series i s not stationary in |l evel s, but t he
beginning of the recent financial crisis. It is certainly not the case that the time series behavior of
the VIX is nonstationary in levels. This would medhat since the series is bounded from
below, we should expect it to trend on towards positive infinity. In the same way, | expect
realized volatility to be stationary. In order to have cohesive test conclusions later on (that are
based on levels), it is iportant to show that the underlying series are stationary, but there is
another contravening factor that clouds this type of testing.

The core hypothesis of this paper is the presence of nonlinear effects in levels.

Nonlinearity reduces the power of unitot tests in the same way as structural bréaks order

13 Although the VIX is related to other economic varighileat display a trend, a long term trend
woul d push the series either to 0 or bD. Nei th
the VIX.

14 Structural breaks are actually a special case of the threshold autoregressive model where time

is the hreshold variable. The TAR model is itself a special case of shti@stsition threshold
autoregressive models.
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to test for the presence of a urobt, | begin with Augmented Dickeyuller, ADF, testing.

Since there are several large spikes in the later part of the time series, | allow for the presence of
deterministic trend terms and follow Dolado et al. (1990) to eliminate each drift term. The results
in Table 3.2 show that there is a significant constant drift term in each series, but in each case |
reject the null hypothesis of a umdot. The large sges in the second half of the dataset are
likely the cause of the significant trend term. | follow a gen&raipecific methodology by
starting with 12 lags in each case, which is approximately one year of previous observations.
Since | show later that éne are significant nonlinearity effects in the model, this is a stronger
result than necessary. In order to further see if nonlinearity is present in the series, | test for a unit
root in the presence of asymmetric adjustment.

Enders and Granger (1998)epent an approach to unit root testing in the presence of
asymmetric adjustment. They show this in the context of threshold and momentum threshold
models, and | test under each structure. The threshold model uses a lagged observation of the
variable of irterest; the momentum threshold model uses a lagged first difference. As the
attractor they use zero, a constant, or a linear trend term. Since the realized volatility (and
correspondingly, VIX) is bounded from below at zero, | test only with the corstahtinear
trend setups. The results for these tests are shown in Table 3.3. With the TAR model and a
constant attractor, the S&P 500 realized volatility is significant at the 5% level. In all other cases
| reject the presence of a unit root at a gredteatn 1% | evel . Kel 9- (2011
root test in the presence of an ESTAR model. For an ESTAR pedelit root in the internal
portion of the model is acceptable as long as it is meagrting in the outer region. In order to

testthe outerarg i o n Kol 9 puts forward the following

v

Y& 1Yo % p AGB G 6
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Here y represents the demeaned, detrended VIX. Startipgdt2, | selecp based on the BIC.
The variablet is the ut-r oot t es't coefficient. 2 is the r&¢
anotherz is set topyqs. The delay parameted, is found using the smallest RSS. The results are
shown in Table 3.4. Similar to each of the other-umiit tests done so far, frengly reject the
presence of a unit root. This is consistent with previous models that have assumed a stationary
mo d e | of the VI X and volatility (see Whaleyos
The EndersGranger test also gives other useful statigocscharacterizing the behavior
of the data. Once the presence of a unit root has been rejected, the equality statistic can be used
to test whether the adjustment is symmetrical. Here | find mixed results. Based on the RSS the
TAR model is a better fit fothe VIX series; because under the TAR model, the VIX adjustment
terms are significantly different. This means that there may be a region where the VIX is much
closer to a unitoot relative to the other region. For the RV series, the momentum threshold
model gives a lower RSS. Here again the adjustment terms are significantly different from each
other indicating regional differences. Since | have found that there is evidence of threshold
effects, | move next to a set of pretests for threshold models.
| begin the identification of the nonlinearity by pretesting for threshold behavior using a
test that assumes an abrupt break between regimes based on a lagged term. | select an AR(p)
model by using the AIC and BIC. The best fit for the VIX is an AR(2) madel, the best fit for
the realized volatility series is an AR(1). Since | am moving towards a VAR model, | use an
AR(2) model in both cases for the threshold testing. In each casdgs are generated from
1000 random draws. | also test each variablagutie other variable as the threshold variable,

and | run the tests under the momentum threshold setup as well. The threshold testing in Table
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3.5 shows a number of significant results. Since threshold effects are present, | move, next, to a
pretest thaincludes a broader range of threshold behaviors.

Terasvirta (1994) develops a model that allows for testing between an LSTAR and an
ESTAR model. Thigest involves using the higherder TaylofSeries coefficients and testing
several conditional hypothes@bout these statistics. The preliminary test uses a null hypothesis
of linearity. As shown in Table 3.6, | reject linearity in several instances. Since financial markets
quickly incorporate information, | expect the delay parameter to be small for mig $1o%lel.

For d equal to 1 or 2I strongly reject the null hypothesis of a linear model. Once linearity is
rejected, the general rule for picking between an LSTAR and ESTAR model is to see whether
the ejection of HO2 is stronger thahe rejection of HOlor HO3. When true, the ESTAR is
likely to be the best fit. An ESTAR model will also likely reject H12. This is precisely the
pattern given by the results for d=2. Unfortunately, the reliability of these tests is reduced by the
presence of data asymmetijhere are also several configurations where the LSTAR model is
approximated by part of an ESTAR model. To compare these models, | begin the estimation
process.

The data in Figure 3.2 shows signs of an ESTAR model visually and through testing.
Visually, there seems to be a greater disconnect between the VIX and RV when realized
volatility is very low or very high. | develop an ESTAR model and begin with lag length tests.
With an ESTAR model, there are two regions. One region is found where the transitbarfu
0, is zero (coefficients labeled 1). The other region is where the lagged VIX is far from the
threshold (the sum of coefficients 1 and 2). Between these regions the model smoothly
transitions from one to the other. Usingdgelihood tests | faiko reject the null hypothesis that

the third lag variables are zero. In order to select the correct delay parameter for the regime
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switching, | use the lag length found earlier and vary the delay parameter. A delay parameter of 2
gave the lowest RSS. Onttee delay parameter was selecte@calculated the lag length tests to

get the lag length of 2. Iterating between each of these selection criteria gave a consistent model
of 2 lags with a delay parameter gfvihich is shown below. The regression resutt Table 3.7

show starkly different characteristics for each region. Because | use a nonlinear model, the
statistical significance shown cannot be directly used for hypothesis testing, but the relative
magnitudes of the-gtatistics do communicate somieth about the nature of the underlying
variables. Normally, one would expect the most recent observation to contain the most
information, but the VIX contains a number of significant, stiwed spikes. When VIXis a

spike, both of the last two VIX obsations fit poorly. When VIX: is a spike, it is not as
informative as VIX.. Using a delay parameter of 2, meaning MIX used in the transition
function, fits better because it solves this spiking issue. |, next, remove different parts from the
abowe model to see whether both series are statistically significant.

The most recent VIX and most recent RV both contain a lot of overlapping information
which can be seen in simple linear models. Within the ESTAR model that | develop, | remove all
the lagsof each series to see if they are altogether statistically significant. | use likelihood ratio
tests which can be seen in Panel B of T&ble | first exclude all the lags of RV. If it is not
valuable in forecasting the VIXthen | should fail to rejecthe null hypothesis that these
coefficients are zero. This is also a test of Granger Causality because a failure to reject would
mean that the lags of RV are not significantly useful in forecasting the VIX. | strongly reject the
null hypothesis meaning thaghe RV Granger Causes (or is useful in forecasting) the VIX.
Second, | exclude all of the lags of the VIX from the model. If a dominant amount of the useful

forecasting information is included in the RV and the VIX is not incrementally useful, then |
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would expect to fail to reject for the VIX exclusion. | find the opposite and strongly reject that
the VIX terms are jointly not useful in forecasting. Typically, a genrrgpecific method is
common practice for time series models, but in T8lehere s a number of lags that seem to

be insignificant (once again thestats are not informative in nonlinear models). In order to
examine the significance of these lags further, | usdikegjhood tests to check each of the
second lags individually. | stawith a single lag of each variable in each region. | then add a
single additional lag in each region and test this additional variable for significance. The results
are shown in Panel A of Table 3.8.

On the one hand, the results of the-lizglihood tests fail to reject that the additional lag
of realized volatility lag is zero. On the other hand, the tests strongly reject that the coefficients
on the additional lags of the VIX are zero. To further avoid -&itttng my mode] | also
calculate the AICiad BIC for a number of different lag configurations which are shown in Panel
B of theaforementionedable. Although the logjkelihood tests indicate using two lags in each
region for the VIX and a single lag in each region for the RV, the AIC and BIK d®éct a
single lag for each variable in each region except for in region 2 for the VIX. Having selected a
more parsimonious model, | next move to estimation.

The previous tests have led to an ESTAR model that uses a single lag of the realized
volatility and 1 or 2 lags of the VIX depending on the region. In the region very close to the
threshold variable, | use a single lag of the VIX. | regionvBen the threshold variable is far
from the threshold variable, | use two lags of the VIX. The estimatetehi® shown in Table
3.9. I nterestingly, the previ oute-onpleasigiearddds RV
the threshold value. Henae, normal markets near the historical average, the VIX incorporates

al most al | of t hieed ypolatdity. IA® thesthresheld vadathl® moves éudhler
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from this nor mal rage, a much smaller amount
incorporated into the VIX. When volatilities are very high or very low, the VIX depends less on
RV.Thiss further expl orwmdneansan t he model 6s | ong

Since the models coefficients depend on the threshold variable, | use the average of
reali zed volatility and the model 6s regional
long-run means. The medl 06 s-run mears are dependent on the threshold variable. This
pattern is shown in Figure 3.3. The results are also shown in Table 3.9.

The presence of ESTAR regions shows starkly different behaviors in each region. Near
the threshold value, the preveRYV is almost entirely incorporated, but the previous lags of the
VIX have a very small influence on the esiep ahead forecasts. In the fringe region (at very
low or very high levels) a little over one third of the previous realized volatility is incaigd in
the VIX. This is a much smaller amount than in the middle region. In this fringe réiggoW1X
also displays more persistence. This is consistent with the greater disconnect observed in the
fringe regions. Even if RV were to be nearly zeroseveral days, the VIX would remain higher.

This similar disconnect is observed when RV is spiking. Although the VIX is almost always
higher than RV, traders know that a large spike will quickly revert to normal levels.

There is an argument that suggestsriest rates must be stationary because over the past
century they have been fairly similar to what they were in some of the most ancient cultures
(Cochrane, 1991). With time series modeling, each model implies adongiean (or lack of
one).Thus simiarly, | use the average of realized volatility and the ESTAR model to look at
how the longrun mean varies with the threshold value. The results below show that the series is
generally reverting towards a value of 13.5, but when the previous VIX obser&itlose to

18, this longrun reversion point increases. This also shows that the behavior of the VIX in each
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extreme is fairly similar. Near the medjahe forecasted VIX depends primarily on previous

RV, but in the extremeshe most recent value tiie VIX has a greater impact on the estep

ahead forecast. In these extremes, the previous RV has a smaller influence on the VIX. These
dynamics are consistent with previousrkteire that has said that indsckke the VIX hold some
information that reent realized volatility does not.

The VIX and RV time series are based on the second order moments of returns. In order
to further characterize these series, | also pretested for the GARCH behaviors in these series.
Since this would be the standard déwia of a standard deviation, this is a fourth order
characteristic. In results not shown, | find GARCH effects similar to almost any otaacial
variable. These fourtbrder effects generally lower the power of tests in levels, but since my

tests stil found significant effects | did not build the GARCH effects into my model.

3.5, Implications

There has been an extraordinary amount of capital invested into volatility tracking
indices The presence of volatility speculation gives a unique window intoihdividuals view
volatility. Previous literature has found that the information contained in a volatility index is
|l i kely not the same as the information cont ai
show that in addition to the above etechere are also marked differences that depend on the
region in which the recent VIX levels have occurred. This is important for anyone in the options
market and particularly important for those who are using or forecasting implied volatilities for
value-at-risk studies.

Financial firms direct a significant amount of resources to various risk management

measures. The implications of my findings are that using the VIX or realized volatility alone is
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not sufficient for forecasting future volatility levelBven using both these series is not sufficient
because they contain threshold effects; hence, in some regions only one of the above volatility
indicators is useful. Although the VIX is designed to be forward looking, a large portion of its
informationiscont ai ned in the previous periodds real

of the information contained in these series in order to accurately forecast volatility.

3.6. Conclusions

| have shown that the VIX is not only distributed asymmetricallplso has nonlinear
threshold effects. In contrast to many previous studies, | have shown that the VIX is stationary
which is consistent with our theoretical understanding of the statistical moments of financial
data. The level of meareversion and,arrespondingly, the ability to reject a undtot process is
asymmetric in Ender&ranger tests. This indicates the presence of a nonlinear data generating
process. | pretest for both threshold and smooth threshold autoregressive effects and find
significsnt evi dence for both. Using Ter2svirtaods (
model, testing suggests an ESTAR model is a better fit. Harmoniously, | estimate an ESTAR
model that confirms my suspicions that there are economically and statisticgifrcant
smooth threshold effects in the time series of the VIX. These findings are important for a number
of reasons. It can be argued that the VIX captures more about market psychology than recent
realized volatility. My model indicates that when rec¥iX levels are far from their threshold
value the most recent VIX and RV observations have some level of influence on the predicted
next observation. Close to the threshold value, the VIX is not very influential for forecasting and
most of the next VIX emes from the recent RV. Throughout both regions the RV plays an

important part in predicting the VIX, but this influence is much smaller at the extremes. Standard
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industry practice is to use some weighted average of implied volatilities for model aatibrat
However, this approach ignores Alamear and regime switching possibilities which are clearly
present in these time series. Risk managers must take into account these effects when building

their term structure of volatility for pricing and forecagtin
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Table 3.1: Summary statisics

Shown below are summary statistics for a several sampling schemes for the voldiities
The day count convention can be done either by 30 calendar days or 21 trading days.

S&P S&P S&P S&P
500 500 21 100 100 21
Act. Day Act. VXO Day
VIX Realize VIX 21 Realize VXO Realize 21 Realize
Act. d Day d Act. d Day d
Observations 315 315 290 290 368 368 339 339
Mean 19.888 15.728 20.006 15.781 20.985 16.221 20.420 17.114
Median 17.790 13.467 18.385 13.040 19.170 13.932 19.230 13.872
Maximum 69.950 82.80 80.860 80.253 85.990 107.147 79.360 103.836
Minimum 9.480 4.673 9.310 5.053 9.040 4,511 9.190 4.536
Std. Dev. 8.038 9.499 8.416 9.468 8.932 10.215 8.807 10.214
Skewness 2.114 3.011 2.670 2.834  2.266 3.822 2.204 3.718
Kurtosis 7550 13.162 13.162 12508 9.721 24.086 8.809 22.629
506.41 1831.41 1592.49 1480.48 1007.56 7713.63 751.20 6223.15
JarqueBera 6 2 1 4 0 6 0 0
Probability 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Autocorrelati
on 0.801 0.735 0.820 0.734 0.780 0.594 0.803 0.584
CrossCorrelation 0.794 0.779 0.704 0.682
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Table 3.2: Augmentel Dickey-Fuller test

Shown below are the results for the ADF test. Here | start with 12 lags, which is approximately
one year of data. | follow Dolado et al. (1990) to eliminate the influence of podsiblerms.

VIX Act. S&P 500 Act. Realizec

Lag -0.176  -0.259
t-stat -4.866  -6.114
Drift Terms C, T C, T
Sig. Drift Terms C C

No. of Lags 1 1
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Table 3.3: EndersGranger unit root test

Shown below are the results from the Enderanger unit rootest with asymmetric adjustment.
The (-statistic is the test statistic for the presence of a unit root. The critical values are also
shown.

TAR Model
EndersGranger (No Attractor Drift) EndersGranger (Constant Drift)
VIX Act. SP 500 Act. Realize VIX Act. SP 500 Act. Realize:
Attractor 25.40 13.84 Attractor 20.14 11.21
Trend 0.02 0.02
T-Max -1.81 -2.29 T-Max -1.96 -2.60
Above Lag -0.29 -0.14 Above Lag -0.28 -0.17
Below Lag -0.06 -0.27 Below Lag -0.07 -0.31
4-Statistic  13.24 5.12 d-Statistic  14.01 6.95
Equality 11.94 1.14 Equality 9.52 1.36
No. of Lags 1 10 No. of Lags 1 7
Best RSS 7020.7 12216.4 Best RSS 6988.6 12446.6
MTAR Model
EndersGranger (No Attractor Drift) EndersGranger (Constant Drift)
VIX Act. SP500 Act. Realizec VIX Act. SP500 Act. Ralized
Attractor 19.59 14.44 Attractor 17.04 11.65
Trend 0.02 0.02
T-Max -2.8622  -0.8003 T-Max -2.97 -1.05
Above Lag -0.148 -0.051 Above Lag -0.16 -0.07
Below Lag -0.191 -0.321 Below Lag -0.20 -0.34
a tStatistic 11.531  10.812 d *Statistic 12.04 11.39
Equality 0.298 9.246 Equality 0.30 9.34
No. of Lags 1 7 No. of Lags 1 7
Best RSS 7092.7 12146.1 Best RSS 7070.9 12102.0

Estimated Constant Attractor

d-Statistic (UnitRoot Test) 4 *Statistt (Unit-Root Test)

90% 95% 99% 90% 95% 99%
250 3.74 4.56 6.47 4.05 4.95 6.99
1000 3.74 4.56 6.41 4.05 4.95 6.91

EstimatedTrendAttractor

d-Statistic (UnitRoot Test) 0 *Statistic (UnitRoot Test)

90% 95% 99% 90% 95% 99%
250 5.18 6.12 8.23 5.64 6.65 8.85
1000 5.15 6.08 8.12 5.60 6.57 8.74
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Table 3.4: ESTAR unit root tests

The results for a unit root test with a possi
(2011) and can be represented as shown below:

Y& 1Yo % p AGBa 6
They represents the demeaned, detrended variable of interest. | start with 12 lags. The number of

lags,p, is selected using the BIC. The variables the unitr o ot t est coratddfi ci en
conversion from one regime to anothers set topysconsise nt  wi t h Ksal 9 5.

VIX Act. Asymptotic Critical Values

«Statistic  -0.264 1% -3.19
t-Statistic  -3.922 5% -2.57
) 0.115 10% -2.23
t-stat 1.127

Delay Par. 4

No. of Lagg 1
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Table 3.5: Threshold testing

The below is a pretest of threshold autoregressive behavior. The underlying linear model is an
AR(2). The pvalue is bootstrapped from 1000 random samples.

TAR Model

Dep. Var. Thresh. Var. Delay Threshold P-Value
VIX VIX 1 25.750 0.101
VIX VIX 25.040 0.007

2
VIX VIX 3 17.820 0.112
SP 500 SP 500 1 18.804 0.158
SP 500 SP 500 2 21.337 0.007
SP 500 SP 500 3 18.083 0.006

MTAR Model

Dep. Var. Thresh. Var. Delay Threshold P-Value
VIX VI X 1 2.940 0.710
VIX VI X 2 -2.110 0.086
VIX VI X 3 1.310 0.987
SP500 @SP 501 -3.944 0.000
SP500 @SP 502 6.525 0.007
SP500 o@pSP 503 6.272 0.007
TAR Model

Dep. Var. Thresh. Var. Delay Threshold P-Value
VIX SP 500 1 22.444 0.000
VIX SP500 2 21.337 0.347
VIX SP 500 3 12.170 0.250
SP 500 VIX 1 25.660 0.001
SP 500 VIX 2 20.740 0.001
SP 500 VIX 3 24.150 0.000
MTAR Model

Dep. Var. Thresh. Var. Delay Threshold P-Value
VIX pSP 501 5.195 0.000
VIX pSP 502 -3.884 0.200
VIX S BOO 3 2.164 0.843
SP500 o@VI X 1 2.620 0.007
SP500 o@VI X 2 -3.460 0.021
SP500 VI X 3 5.468 0.012
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Table 3.6: Threshold testing

The

foll owing

tabl e

shows

t he

resul ts

from

LSTAR and ESTAR models. The assuirmear model is an AR(2). The last four columns are

the various tests for choosing between an LSTAR and ESTAR models. -TéssFand

corresponding {values (in parentheses) are shown for each null hypothesis. For example, with a
delay term set to 1, tHestatistic is 2.468 which has avplue of 0.024.

Delay Linearity HO1 HO2 HO3 H12
1 2.468 0.709 0.985 5.660 0.847
(0.029 (0.493 (0.375 (0.009 (0.499
2 3.293 2.298 7.484 0.061 4.940
(0.009 (0.102 (0.00) (0.941) (0.00)
3 1.602 1.438 2.84 0511 2.155
(0.149 (0.239 (0.059 (0.60) (0.079
4 1.646 0.374 1555 2982 0.965
(0.139 (0.689 (0.213 (0.052 (0.429
5 1.942 0.785 1.736 3.262 1.262
(0.079 (0.4579 (0.178 (0.040 (0.285
6 1.689 0.313 0.969 3.761 0.641
(0.123 (0.730) (0.38) (0.029 (0.639
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Table 3.7: Initial ESTAR m odel

Panel A of he table below shows the results of my ESTAR model of the VIX index. The
threshold variable is theecondlagged level of the VIXThe coefficients in each region are
labeledl or 2. Region 1 is the region far from the threshold valbeammay, is a measure of the
change between states, ands the threshold value (at you take the sum of each regien
coefficients to get the forecast equajidpanel B excludes either the VIX or tR& terms from

the above equation using a likelihood ratio test. The estimated equation is as follows:

WO f 'O I w0d | Yo | Yo
MO0 0 W0 wwd DYw DYw -
where, Q ©W0d p AGE ©®O0H &

Panel A: ESTAR model

Region Variable Coeff Std Error T-Stat Signif

1 Constant 11.788 8.270 1.425 0.155
1 VIX¢t1y 0.097 0.145 0.669 0.504
1 VIXt2 -0.426 0.465 -0.916 0.361
1 RV (-1 0.957 0.083 11.468 0.000
1 RV (-2 0.014 0.123 0.114 0.910
2 Constant -7.866 8.349 -0.942 0.347
2 VIX¢1y 0.100 0.172 0.579 0.563
2 VIX¢t29 0.719 0.471 1.527 0.128
2 RV (-1 -0.5% 0.092 -6.045 0.000
2 RV (-2 -0.053 0.139 -0.379 0.705

) 0.189 0.072 2.610 0.010

c 18.722 0.292 64.078 0.000
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Panel B: Excluding each series

Variable Log Determinates G%(n) n Signif

RV 2.256 3.049 238.732 4 0.000
VIX 2.256 2497 72.712 4 0.000
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Table 3.8: Comparison of similar ESTAR models

Panel A sbws loglikelihood tests that compare a model with a single lag on each variable in
each region with a model that includes the second lag of a single variable in a single region.
Panel B of the table below shows the AIC and BIC of a number of similar sadgiejion 1 is

the region near the threshold value. Region 2 is the region far from the threshold value. The
heading fiLags 2/ 10 means that there are two
this variable in Region 2. Included at the bottara the AIC and BIC for a simple AR(1) model

and an AR(1) that includes the realized volatility term.

Panel A: Loglikelihood tests for 2 lags

Dropped Variable Log Determinates é2(n) n Signif
RV (R1) 2.377 2381 1.284 1 0.257
RV (R2) 2377 2381 1293 1 0.255
VIX (R1) 2.262 2.381 36.290 1 0.000
VIX (R2) 2.259 2.381 37.221 1 0.000
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Panel B: AIC/BIC comparison

Regionl/Region2
VIX\RV Lags 0/0 Lags 1/1 Lags 1/2 Lags 2/1 Lags 2/2
Regionl/Regionz Lags 0/0 AIC= 2596
BIC= 2626
Lags 1/1 AIC= 2560 2560 2560
BIC= 2590 2594 2594
Lags 1/2 AIC= 2523
BIC= 2557
Lags 2/1 AIC= 2524
BIC= 2558
Lags 2/2 AlC= 2769 2525 2529
BIC= 2799 2563 2574
AR(1) AlIC= 2796 AR(1)X AlC= 2615
BIC= 2803 BIC= 2626
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Table 3.9: ESTAR Model

The table below shows the results of my ESTAR model of the VIX index. The threshold variable
is thesecondagged level of the VIXThe coefficients in each region are labelegr 2. Region

1 is the region far fronthe threshold valueGamma,9, is a measure of the change between
states, and is the threshold value (atyou take the sum of each regisrcoefficients to get the
forecast equatignThe estimated equation is as follows:

OOOT T OO0 | Yo QOO0 @ 0O00d 000d OYo -

where, "0 W0 p ABEH 00O ©

Region Variable Coeff Std Error T-Stat Signif

1 Constant 4.956 1.678 2.953 0.003
1 VIX 1) 0.061 0.102 0.599 0.550
1 RVt 0.941 0.076 12.330 0.000
2 Constant -0.925 1.876 -0.493 0.622
2 VIX 1) 0.137 0.132 1.034 0.302
2 VIX t-2) 0.276 0.044 6.342 0.000
2 RV(t1) -0.569 0.088 -6.504 0.000

2 0.134 0.048 2.775 0.006

C 18.562 0.293 63.330 0.000
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Table 3.10: Regional longrun means

The table belovshows how the LR mean varies based on the threshold values distance from its
attractor. The threshold value is the second lagged level of the VIX. The threshold fugction,
variesfrom 0 to 1 based on the ESTAR model. In order to incorporate the effects of RV, the
average is included in the equation for LR mean. The results are unchanged for a threshold value
greater than 30, so those rows are not included. The dependent variabl¥IiX.

Thresh g Constant VIX¢1) VIX@2 RV LR Mean

5 1.000 4031 0.197 0.276 0.371 13.501
10 1.000 4031 0.197 0.276 0.371 13.501
15 0.817 4200 0.172 0.226 0.475 14.458
20 0.242 4.732 0.094 0.067 0.803 18.268
25 0.996 4034 0.197 0.275 0374 13.519
30 1.000 4031 0.197 0.276 0.371 13.501
35 1.000 4031 0.197 0.276 0.371 13.501
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Figure 3.1: Day count methods

The illustration below shows the two common day count conventions used in VIX research. | use
the first one because it allowiset number of trading days to fluctuate as they naturally do over

the lives of shorterm options.
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Figure 3.2: VIX and RV over time

The illustration below shows the VIX and RV under the 30 calendar day counting method. The
horizontal axis shows theagnitude. The RV is adjusted by the square root of the number of
days in a year to match the magnitude of the VIX.
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Figure 3.3: Model long-run mean ofthe VIX

The illustration below show the point to which the VIX meawerts based on the transitio
function and the delayed VIX level. The numbers are also illustrated in 3able
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CHAPTER 4: PERFORMAIVITY -FREE OPTION PRICINGMODEL RANKING

4.1. Introduction

Option pricing has developed an enormous literature over the past 50 years. One maj
issue in derivatives pricing literature is that of performativity. Mersifi@bsted s Di ct i on arr
defines perf or maédngvrirdlaying ® san ekpoeksiom thad serves fo effect a
transaction or that constitutes the performance of the gmbaift by virtue of its utteranced A's
models better capture the many eccentricities of financial markets, market prices tend to fit
models better. For example, when the Bi&dholesMerton option pricing model first became
widely adopted by the markat,fit quite well because it was the model most traders used. If a
new model does actually fit the underlying better, empirical tests will be unlikely to agree
because the market itself is not using the new model. Since most OPMs have some form of
volatility term, the option price and the forward looking volatility are jointly unknown. Neither
can be directly computed without the other. To work around this,ispuepose a methodology
for ranking OPMs. A large number of OPMs use the normal distributiearire form because it
is tractable. OPMs also assume a specific stochastic process for the underlying. This
methodology is appropriate for OPMs that use some form of normal distribution and assume a
stochastic process for the underlying.

This chapteris arganized as follows. Sectiofh2 discusgs the relevant literature. In

section 4.3, | introduce the three OPMs used in this paper and explain my new ranking
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methodology Section3.4 gives the data sourceSection4.5 discussesny empirical findings

and ction4.6 presentshe conclusions.

4.2. Literature Review

Our understanding of the nature of randomness predates almost all of modern science and
mathematics. The Roman philosophéycretius (60 BC), gives one of the first known
descriptions of a matheatical process that has become known as Brownian motion. It is so
named for Robert Brown (1872) who observed the random movement of pollen particles.
Options trading has certainly been around for centuries. One of the first mathematically rigorous
paperson option pricing isBachelier(1900) who developed an option pricing model based on
arithmetic Brownian motion, ABM. His line of inquiry lay dormant for decades until it was
Aredi scoveredo by Paul Samuel son in the 1950s

Osborne (1959) did some of therlesst empirical work on the distributional
characteristics of stock prices. He uses the first and third quartiles of the distribution of stock
prices on a number of different days to establish the type of randomness in stock prices. He
concludes that gecetric Brownian motion is the best fit. There are several issues with his use of
daily stock prices. There seems to be evidence that stock prices themselves are limited to a
particular range. | avoid this issue by using an index. His paper was groundreakinat it
expanded empirical testing methodologies to the stock market, but at the time there was some
controversy as to his actual contribution. In that same journal, Osborne Eq@2)dsipon his
initial approach by putting forward the log of thécprrelative as the best measure of the random
walk of stock prices. Interestingly, he also mentions that the outliers indicate a power distribution

with outliers playing a significant role in the overall process. Alexander (1961) also notes that
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t hestd aif @do distributions are a significant
evidence against a normal distribution. Around this same tlmeee were a number of important
innovations on the theoretical side of option pricing.

Samuelson (1965buildson sever al ot her earlier paper
paper) that have used arithmetic and geometric Brownian motion. He lays out a number of
important boundary conditions for option pricing and even postulates that the direct equation for
a call price will be based on the heat equation in an appendix for his paper done by
mathematician Henry P. McKean, @oncurrent with the aforementioned time periedward
Thorp and Sheen Kassouf (1967) began arbitraging the boundary conditions of svaased
on their empirical observations. Thboth became wealthy and even published a book on their
system of trading in 1967. Samuelson and Merton (1969) use a utility framework to develop a
more generalized theory of warrant pricing. They also expanth@roundary conditions of
Samuel sondés previously mentioned paper. The r
they must use a general equilibrium model for pricing the warrant. Up until thisthiere was
no profound agreement on the agprate drift term or return on a particular stock, but there
should not be one because each individual 0s
preferences. This brings us to the remarkable innovations of Black, Scholes, and Merton.

There werdhree papers that have put forward the most ubiquitous OPM of our time. The
theoretical portion of the BSM OPM was put fo
(1961) model of warrants looks very similar to the BSM model except for the fact ¢hstbttk
price has an additional discount teknand the strike price is discounted by the té¢fmBlack
and Scholes note that researchers have not found an empirical solution to these terms. Black and

Scholes also borrow from Thorp and Kassouf who presltie idea of a hedge ratio. Using this
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key observation, the heat transfer equation, and some difference equations they put forward their
iconic model . The only differencé&=>bandkivieen t he
equal to the present wad of $1 paid at expiration based on the-figle rate. The big innovation

is that one only needs to know the riske rate not the appropriate required rate of return on the

stock. Merton (1973) expands on this model by simplifying it arderevingBe c k and Schol
difference equations in continuous time. He shows a proof of a continually rebalanced portfolio
and develops of the model s underlying partia
the empirical testing of the BSM model wasblished first.

Black and Scholes (1972) collected data on 2,039 calls and 3,052 straddles. They tested
their new model 6s option pricing ability by ¢
also compare their model to market prices to seéerfadi ng on HAovervaluedo
contracts | eads to positive returns. They def
than the model price. They do mention that if they trade based on their, ntiegelose a
significant amount of monegach day. At this time option markets had not yet accepted the
BSM OPM?®. The BSM OPM is based on geometric drift and geometric Brownian motion,

GBM. Since BSM, numerous extensions to their models have been formulated and tested.

As of the writing of thigpaper SSRN lists over 2800 papers on option pricing. Much of
the empirical work seeks to find models that more closely match observed option prices. Some of
this has come in the form of allowing additional stochastic terms. Following many other
empirical investigations, Bakshi, Cao, and Chen (1997) develop an option pricing model that

uses stochastic volatility, stochastic interest rates, and stochastic jump processes. To test their

15 A more detailed history of the development of modern option pricing models can be found in
Chance (1995).
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proposed model, they use observed option prices and compare them newheiodels in three

ways: parameter consistency with observed data;ofesample pricing, and hedging.
Correspondingly, Carr and Wu (2004) propose a new framework for option pricing to address
jumps, stochastic volatility, and the leverage effect. Tapiporate the leverage effetheir

model 6s Brownian motion is negatively correla
process. In contrast to this approach, the ABM model address the leverage effect by assuming
that volatility remains unchangexien as the stock price decreases. This leads to price relative
volatilities that are negatively correlated with underlying returns.

Corsi, Fusari, and Vecchia (2013) propose an OPM that uses -ankmgry stochastic
process in RV to proxy for unobserveption volatility. They test their model by using S&P 500
index futures and options. By estimating a stochastic drift term based on implied votaghty
move their model closer to the standard normal distribution. Chambers, Foy, Liebner, and Lu
(2014) compare option models by computing historical option strategy returns. They then
compare these returns with returns derived from severalkweltn OPMs and show that for
out-of-theemoney put options there seems to be a substantial premium. Here again the
methodology for comparing models uses option prices and underlying returns which introduces
performativity issues. Fulop, Li, and Yu (2015) develop aeetiting model of return volatility
that includes Bayesian learning on the part of market partisip&hey use the S&P 500 index
to measure the effectiveness of their model. They find evidence that a single jump is likely to be
followed by other jumps as individuals adjust their beliefs about the underlying market. In
addition to more general OPMs tHatus on stock priceseveral researchers have proposed

particular models for certain underlyings.
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The VIX is an index that measures overall market volatility by using the implied
volatilities in the equity options market. A literature has developedsieks to predict stock
market volatility, and another literature looks at creating options on the VIX. Since it is often
used as a hedging instrument, it seems natural that investors would want to buy options on the
VIX. Wang and Daigler (2009 ompare anumber of different VIX option models. They find
that although a number of more complex models exist for modelling the VIX, the simpler models
perform better. They also mention some conversations with VIX options traders. These traders
use a BSMstyle moel instead of the more sophisticated models availdlidgcia and Sentana
(2013)compare a number of different stochastic volatility models for the VIX. They use futures
and options over a number of time periods surrounding the recent financial crigisiof@ehat
there is a significant risk premium in the leng volatility level. Their preferred model uses the
log of the VIX and incorporates stochastic volatility and mean reversion. This model is similar to
the CIR model tested below.

OPMs generallyse the current price of the underlying, a currentfris& rate, the time
to-maturity, the strike price, and a volatility term, but there are some complicating issues when it
comes to testing OPMs. The time to maturity and strike price are defined withiaption
contract. The current underlying price and the-figle rate can be observed in the marketplace.
The volatility is not and cannot be known with certainty. If the price is giem volatility can
be solved for, or if the volatility is assuthean option price can be computed. In the empirical
literature on option pricingnodels are generally compared against the observed option prices.
Here | present a new method for ranking OPMs that circumvents this problem by relying

exclusively on the the series realizations of the underlying.
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4.3. Methodology

There are an ever increasing number of stochastic processes that are commonly used in
option pricing. My goal is to simply compare several basic OPMs that are used for stock prices
and the VIX. Bydiscretizing these stochastic processes, | get a simple approach that can be used
with almost any stochastic process. It turns out that discretization and numerical methods are
being used more and more often. Chen, Harkdnen, and Newton (2014) demadhstrete of
numerical integration to solve for a number of particularly intractable financial derivatives. To
provide a background, | will begin by briefly covering the several simple call option models and
their assumptions.
4.3.1. BlackScholesMerton ogion pricing model

The seminal papers of Black and Scholes (1973) and Merton (1973) put forward the
classic optionpricing formula that bears themame. Writing their model in a way that

incorporates dividends, | get:

where

Q Q , Wy
HereC is the call pricer is the riskfree rateN(-) is the standard normal cumulative distribution
function, q is the divided yield, T is the time to maturityS is the current stock pric& is the
strike price, andly is the annualized volatility defined in percentage terfitss model uses a
stochastic process of stock prices that can be written as follows:

QY YQo , YQa
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The stochastic process contains the volatility term and the drift ¢gridere the change in the

stock price follows some drift which can incorporate a dividend yield. The Wiener Rrdzess

scaled by some relative valay term and the current stock price. The distribution of the error
terms follows a loghormal distribution. One assumption of this model is that the stock price can
never be zero. Given limited liability, it follows that a stock price cannot be negHibveever,

each year there is a small, but significant portion of the stock market that becomes totally
worthless through bankruptcy. The above model makes no allowance for this because under a
log-normal distribution, the price can never be zero. The ¢eifm also has some curious
behavior.

The drift term is usually remapped to the figdutral world through the Raddikodym
Derivative. Typically, the drift term is positive under the physical measure, but there are some
cases where a negative term isrenappropriate (like derivatives based on the VIX). | next look
at a more recent model that is designed to be useful in the situations where the BSM OPM does
not work well.

4.3.2. BrooksBrooks option pricing model

The recent paper of Brooks and BrogR613) pairs the properties of geometric drift with
arithmetic Brownian motion. Without geometric drift OPMs will be nonsensical because the drift
should increase with the price. There are several simple ways to exploit a process that does not
meet this pocess. Using the PDE, Brooks and Brooks find the following model for a call
optionds price under ABM:

0 Q YQ 00 Q . € Q

where
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The volatility term, 0,, is defined in absolute terms instead of percentage tedd@me the
stochastic process for the model can be written lasns:
QY * "YQo , Qa

The drift, £4, matches the previous BSM OPM, but will likely be different given the different
properties of the noise term. It is also important to note that the drift term is in dollar units not in
percentage nits as in the BSM OPM. This model allows for a negative stock price, but the
boundary conditions are no longer violated when you include a zero strike put to include the
effects of limited liability.
4.3.3. CoxingersollRoss model

The CoxIngersoltRoss CIR, model extends the Vasicek model by adding a volatility
term that depends on the underlying variable. It was originally used to model interest rates, and
Grinbichler and Longstaff (199@jse it to model the instantaneous behavior of the VIX. The
stothastic differential equation can be written as follows:

Qw | 1 @Qo , VwQa

HereV is the underlyinglJis some unknown parameter related to the Jamgmeanp is the
speed of reversion towards this lorign leve| andi is the volatiity term. Although incorrectly
specified for stock price movements, this model has gained popularity because it can be used to
model a number of mearverting variables that have increasing volatility in levels. The VIX

model presented b@rinbichler and.ongstaff (1996)an be written as follows:

6 Q Q wdr ¢ th jf p Q@ Or &8 chh vOr §h

where,
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_ ' w
HereQ ( A | 3 is-®nelminus &@ cumulative distribution functionaothisquared distribution
with - as the random variable givén Ydedrees of freedonT.he Vp is the initial price of the
underlying. The noncentrality parameter is represented @®yThey note that there is another
solution to this equation proposeg Bankaran (1963) that uses the normal distribution. This
model is also very similar in form to a previous model for the valuing options on yields by
Longstaff (1990).
4.3.4. Empirical testing

There is no way to observe a terminal distribution in marKéts.market data we see is
only the realization of a near infinite humber of random variables. As with many economic
guestions, you cannot run a finely tuned series of experiments to create a terminal distribution to
test. A Monte Carlo style approach wdwimply confirm whichever model | put forward or use
to program the simulation. What we do have is a series of realized prices for the underlying.
With each of the above models the Weiner Process is the same, but it is scaled in different ways
with the urderlying and different wift terms. A Weiner Process igj@al to zero initially or is
equal to zero when no time has elapsed. It is also everywhere continuous and nowhere
differentiable Additionally, it has the following property:

Wy wx 0 Yo

Here N ( O ,isgihe)normal distribution with a mean of zero and variancepbiThe above
relationship holds for anysuch that no matter where you start the variation is independent of
other time steps. | use daily datadazonstant time steps. Once | remove the effects of the drift

term and the terms that scale | am left with a series of normally distributed error terms.
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My method is formalized as follows: discretize each of the stochastic processes so that
the errorterms are described only by a Weiner process, run a linear regression to get the error
terms, adjust the error terms for time and missing data effects, test the normality of each series,
and compare their distance to a normal distribution. Each of theyse Isas some assumptions
about the series and possible errors so | will describe each step in detail then give examples using
each of OPMs presented above.

All of the stochastic processes described above have a corresponding difference equation.
Writing the equation out is simple, but the coefficients are unknown. There is also an argument
that these coefficients cannot be known in the physical space. In its simplest form the drift term,
g, and the volatility termJi, are assumed to be constant. The drift term is based on an
unobservable risk premium so through the Girsanov Theorem the drift term is converted to the
risk-free rde. | do not change the measure; rath@assume a constantifl term. This does not
mean that the drift term is always the same. As | note later on, options generally trade for
maturities of less than a year. Frequently, these derivatives have a maturity of around one month.
| assume that the drift term and volifgiterm are constant over a month. It is possible toause
risk-free rate, but one whicis appropriate. It is also possible to use some type of regression to
calculate daily or weekly risk premium, but any one of these adjustments will give a higher
variance than simply assuming a constant found with a linear regression. In order to get the
Weiner process as the last termuse some algebra before or after discretization. Another
equally workable approach is to use the conditional distribution to ptbecurrent underlying
price one additional period forward. Both of these methods are illustrated below.

The next step is to calculate the coefficients through a regression. | use simple OLS.

Once the residuals are found they must be adjusted for dgifiesen time steps. Here | use daily
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data to calculate the series of error terms, but markets are not always open due to weekends and
holidays. To generalize volatility to any tirséep, it is welHknown that maturity dependent

volatility can be written afllows:

. WY
| assume that trading day volatility is constant within each regression window. As a robustness
test later onl count the days between observations and adjust the error terms accordingly. The
regression will yield error termbat can be written as follows:

o, Y
If all the timesteps were the same, tiieterm would have a simple scaling effect. Once the
errorterms are adjusted for missing values, they are tested for normality.

There are a number of te$ts normality. Any of these will work in this methodology for
ranking OPMs. In the examples shown beldwise the JarquBera test statistic. It uses the
skewness and kurtosis to test for normality. Another test that is useful in this context is the
Shapro-Wilk test for normality. The Shapif@/ilk test uses the difference between the ordered
sample terms and their order statistics to compare the series to the normal distribution. To
illustrate the initial step in this process | next show the discretizafieach series.

The BSM OPM is based on the following stochastic process:

QY * YQo , "YQa
To create a testable distribution | convert the above equation to a difference equation. For a
summary of the stochastic calculus inxed | would refer you to Mikosch (1999). The future
realization of the stock price under the above data generating process, DGP, is equal in

distribution to the following:

Y Y Qont = Yo , Woé
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To create an empirical distribution of the stochastic term, | divide both sides by the initial stock
price and take the natural logarithm.

\ N “Y n N Sy~ e
ae— ‘ ? Yo , Wog

The BSM OPM assumes a constant -fige rate ad constant drift terms. Thein the above

eqguation is not the riskee rate but is a ris&djusted return that is likely endogenously related to
the stockds movement s. The time intervals al
points. This simlifies the above equation to the following regression:

"Y o
a SY— Yo WNYOH

By subtracting the estimated coefficient from the log of the price reldtyet a distribution of
error terms that, once adjusted for thee step, can be used for normality tests. Demeaning is
not necessary for testing the normality of the GBM distribution, but this setup matches well with
the ABM setup.
The ABM OPM is based on the following stochastic process:
QY ' YQo , Qa

The welltknown conditional distribution for the above equation is shown below:

oA s Qog Yo p
Y Y Qwh Yo , - -9

Inserting constants as done previously gives,
Y OY o pYo oYoé
Since the above equation has a constant of zero, we can use the first difference to put the above
equation in terms of returns. Rewriting gives the following regression,
Y'Y Y ddo  nyeau
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The coeficient ¢p is the same as simple return on the stock price for the given change in time.
Here the error term must be adjusted for the time step in the same way as the previous model.
The CIR model 6s stochastic di fdhee:enti al eq
QY Go YQo , YQu
The CIR model can be discretized into the following welbwn equation:
G0
Y

O Y Yo WMYSH

\J‘Y
T

This setup allows once again for a simplesér regression to obtain the series of error
terms. The series of errors is then adjusted for different time steps to give the testable
distribution. The error terms for ABM, GBM, and CIR can be compared to test which one is a
better fit for option pricig.

Each of the presented OPMs has used properties of the normal distribution to give a
tractable model. The question of which model is a better fit for stock prices or any underlying
remains. | test each series of thstep corrected error terms for notityausing the JarquBera
Test. This test statistic is defined for use with regressions as follows:

e Q. .. p ..
YQ?UOO

Where,n is the number of observatigrsis the number of regressofSkis the skewness of the

error termsand Ku is the kurtosis of the errortermifhe above statistic is
distribution with two degrees of freeddilf the given error terms are normal then they should

have a skewness equal to 0 and kurtosis equal to 3. It is highly unexpetaddd reject the

null hypothesis of normality in any of our empirical setups because it is well known that stock

16 1n small samples this is test hashigh Typel error rate. A table of walue conversions is
available for hypothesis testing, but this is not the waylthaé the test.
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returns are negatively skewed and leptokurtic. Here the test statistic is used to measure which
model is closer to normal. Other methoddl wiork equally as well to test normality of these

error terms.

4.4. Data

There are two data sets that | use to test this methodology: the S&P 500 and the VIX. For
the S&P 5001 use the daily closing prices without dividends. Dividends are not inclurded
option pricing unless an extraordinarily high dividend is paid. These closing prices are readily
available online from a large number of sources. The S&Pi$88 index based on the stock
price of just over 500 companies that are representative of k§jandustries. These companies
are chosen by committee and are also subject to several liquiditiragotss This index is a
widely-used measure of the US economy and the stock market as a whole.

The VIX is an index designed to track market volatilitywas originally based on the
S&P 100, but was redesigned to better match market conditions in 2003 (for a more detailed
explanation of this change see Whaley, 2009). The VIX in its current incarnation is the square
root of the fixed leg of a 3Bay varance swap. The fixed leg of this swap is implied by a
number of implied volatilities in the options market. Since these options generally expire on the
third week of each month, the implied volatilities of the nearby and second nearby options are
used to bild a term structure of volatility. This term structure is then used to compute the swap
price or fixed leg. The methodology for obtaining the VIX has been applied to historical data so
that the dataset begins before the new method for computing it wésrward. The daily VIX

data must be adjusted because it has an overlapping data issue.
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The options used to compute the VIX are within 39 days of their expiration. Since the
method to compute the VIX uses a weighted average of the nearby and second usiagb
daily data will introduce an enormous amount of false serial correlation into the data set. To
remedy this issyel follow the 30day calendar method put forward in Adhikari and Hillard
(2014). Sofor my analysis the distance between any two oMadi®ns is at least 30 calendar
days. Both data sets are included in the summary statistics shown in Table 4.1, Figure 4.1, and
Figure 4.2. The summary statistics show many commonly known attributes of financial market
data. The S&P 500 has a significdexel of serial correlation which is consistent with the -unit
root often found in stock market data. The averages are only important for the VIX series which
tends to be meareverting. Once the 30 day count method is p#w®el serial correlation drops

noticeably.

4.5. Empirical findings

There is a wide range of applications for this testing methodology. It circumvents a major
issue in empirical option pricing literature. The results from applying this methodology to the
S&P 500 and the VIX are shown below
4.5.1. S&P 500 testing

The S&P 500 is an index of many major stock prices. Although the CIR model is not
appropriate given its meamverting assumptions, | use it for illustrative purposes in testing the
S&P 500. | begin by using the entire seriesdata points in a single regression to get my
residuals. | will later add the monthly regression results. The results from my tests without
counting the extra time from weekends and missing days are shown in Table 4.2 and illustrated

in Figures 4.3 and 4.4 lower JarqueBera Test statistic indicates that the error terms are closer
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to the mean. As can be seen from the table above, the ABM model fits best. It is followed by the
CIR model, and the GBM model has the sidit of the three models. Marof thesedifferences
come from the kurtosis of each residual series. Although each series displays negative skewness,
the GBM model has a much higher level of kurtosis than the other models. This is due to the way
that the natural logarithm reshapes the distrdvugf error terms.
4.5.2. VIX testing

The 30 day count VIX data is tested using my methodology. The results shown in Table
4.3 indicate that the best fit is the GBM model. EconometricallyGitimbichlerand Longstaff
(1996) model gives the best setugépture the empirically observed behaviors of the VIX. The
VIX is and must be meareverting because it is based on the standard deviation of an index. It is
someti mes termed the f#ffear indexo because du
significant heights. The CIR model accurately captures both of these characteristics. It allows for
meanreversion through the drift term and scales the volatility so that the distribution is right
skewed. However, the GBM model still fits best. This is consistetit Wang and Daigler
(2009) who in empirical testing note that tiBrinbichlerand Longstaff model gives systematic
errors when compared to observed option prices. They also note that traders in VIX options tend

to use a form of the BSM model. My resuksnforce the BSM model as the best fit for the VIX.

4.6. Conclusions

The preceding pages put forward a new empirical method for ranking OPMs. This
method does not use the option prices observed in the market and is thus free from the common
performativty problem in finance. Performativity is often an issue for economics and finance

researchers because the whole market can be wrong about g madé#l they are all in
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agreementthen new or better models will not show empirical value until they arelywide
implemented by the market. The methodology presented here makes several assumptions about
an OPMs drift terms and uses the properties of Brownian motion to create a testable vector of
error terms which can be compared by their distance to the norrnddudion.

| have shown that in my ingl testing of these modelgye BSM OPM is the best fit for
options that use the VIX as the underlying. This is consistent with previous papers on VIX
option pricing. The ABM model is the best fit for the S&P 500ex. This is consistent with
Brooks and Brooks (2013) who put forward a new option pricing model that allows for stocks to
become worthless. Going forwatldntend to use a number of common option maturity windows
and use a rolling regression approaclseée how this methodology matches different classes of

underlying securities with different classes of OPMs.
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Table 4.1: Summalry datistics

Shown below are the sample statistics for each of my time series of interest. The S&P 500 and
VIX both give daily observations. The VIX 30 Day is based on observations every 30 calendar
days which resolves the data overlap issue in the VIX.

Start End Observations Mean Std. Dev. Serial Corr.
S&P 500 6/1/1993 1/29/2014 5392 1097.19 326.2571 0.999208
VIX 1/2/1990 4/8/2014 6114 20.13 8.043644 0.98184
VIX 30 Day 1/26/1990 2/21/2014 315 19.89 8.038048 0.800576
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Table 4.2: Testing the S&P500

Shown below are the characteristics of the errors derived under the BSM and ABM models. Here
the ABM model is a better fit because it is closer to the normal distribution that is integral to the
assumptions for both models.

GBM CIR ABM

Mean 0.000 0.000 0.085
Std. Dev. 0.012 0.386 12.978
Skewness -0.245 -0.185 -0.343
Kurtosis 8.889 7.265 6.138

Regressors 1.000 2.000 1.000
Observations 5391 5391 5391
JarqueBera 78431 4115.2 2317.8
Chi-P-Value 0.000 0.000 0.000
Chidist 0.01 9.210 9.210 9.210

125



Table 4.3: Testing the VIX

Shown below are the characteristics of the errors derived underSke BBM, and CIR
models. The 3@alendar day VIX dataset is used to correct for overlapping data issues. Here the
GBM model is a much better fit.

GBM CIR ABM
Mean 0.000 0.002 0.552
Std. Dev. 0.196 1.025 5.010
Skewness  1.099 3.524 2.825
Kurtosis 4.018 22.956 22.973
Regressors 1.000 2.000 1.000
Observations 314 314 314
JarqueBera 765 5822.9 5618.6
Chi-P-Value 0.000 0.000 0.000
Chidist 0.01 9.210 9.210 9.210
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Figure 4.1: Time series of the VIX

Shown below is the time series of the VIX for the entirety of the dataset.
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Figure 4.2: Time Series of the S&P 500

Shown below is the time series of the S&P 500 for the entirety of the dataset.
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