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ABSTRACT

We describe a bordered version of totally twisted Khovanov homology. We first twist
Roberts’s type D structure by adding a “vertical" type D structure which generalizes the
vertical map in twisted tangle homology. One of the distinct advantages of our type D
structure is that it is homotopy equivalent to a type D structure supported on “spanning
tree" generators. We also describe how to twist Roberts’s type A structure for a left tangle
in such a way that pairing our type A and type D structures will result in the totally twisted
Khovanov homology. Analogous to the type D structure, there is a spanning-tree-like model

for the type A structure.
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CHAPTER 1

INTRODUCTION

Khovanov Homology, defined by M. Khovanov in the late 1990s, is an invariant of oriented
knots and links that arises as the homology of a chain complex, and whose graded Euler
characteristics is the Jones polynomial (see [7]). More precisely, let L be a link diagram for a
link £ embedded in R? and let (C'(L), dx3) denote the Khovanov chain complex associated
to L. (C(L),Ocy) is a bigraded complex of free abelian groups with a (1, 0) differential 0.
In [7], M. Khovanov proved that the chain complex (C'(L), Ok ) is invariant up to homotopy
equivalence under Reidemeister moves, and thus provides an invariant for £. Analogous to
the Kauffman’s state summation approach to Jones polynomial, the generators of Khovanov
complex are obtained by exponentially many ways to resolve the link diagram. By checker-
board coloring a link diagram, M. Thistlethwaite showed that the Jones polynomial can be
expressed in terms of spanning trees obtained from the Tait graph ( [24]). Motivated by this
idea, A. Champanerkar and I. Kofman in [5], and S. Wehrli in [25] proved that there exists
a chain complex, generated by spanning trees, whose homology is the reduced Khovanov
homology. Unfortunately, there was no explicit formula for the differential of this complex

and thus, the calculation based on this spanning tree complex was still vague.

In an attempt to find a better description for the spanning tree complex, in [19], L. Roberts
defined a totally twisted version of Khovanov homology by using an idea from Heegaard
Floer homology. The construction is based on the extra decorations on the diagram L: a
marked point and labels x; for each arc of L. With this extra data, C'(L) also has a Koszul

(0, —2) vertical differential 0y, which commutes with Oxy. (C(L), 0y + Oy) is the totally



twisted Khovanov chain complex and its homology is an invariant of £. The distinct advan-
tage of this complex is that it also admits a description for the deformation retraction chain
subcomplex whose generators are the spanning trees and the differential can be computed
explicitly from the labels {z}. In particular, for the case of knots, in [23], T. Jaeger proved
that the totally twisted Khovanov homology is isomorphic to the reduced Khovanov homol-
ogy. Therefore, we get a spanning tree complex description with an explicit differential for

the reduced Khovanov homology.

Modeled from the construction of the bordered Heegaard-Floer homology given by R. Lip-
shitz, P. Ozsvath, D. Thurston [11]|, L. Roberts, in [17] and [18], described how to obtain
the Khovanov homology of a link from a diagram divided into two parts, left and right
tangles. To those tangles, he associated different types of tangle invariants in such a way
that gluing those two invariants recovers the Khovanov homology. There are several ways
to extend Khovanov homology to tangles by M. Asaeda, J. Przytycki and A. Sikora in [2],
A. Lauda and H. Pfeiffer in [10], D. Bar-Natan in [4] or M. Khovanov in [8]. In [20], by
using the idea of the totally twisted Khovanov homology in [19], the author and L. Roberts
took the construction of M. Asaeda, J. Przytycki and A. Sikora and twisted them to obtain

a tangle invariant (called twisted tangle homology).

In an effort of combining those two theories to study the reduced Khovanov homology,
we will twist the Roberts’ tangle invariance to get the twisted invariances for each tangle-
component of a link, which recovers the reduced Khovanov homology by gluing the tangle-
components. Since the cores of the underlying complexes in "bordered" Khovanov homol-
ogy construction was based on the extension of Khovanov homology for tangles given by
M. Asaeda, J. Przytycki, and A. Sikora [1], 2], we will take the approach of twisted skein

homology, described by the author and L. Roberts.



Before we describe the chain complex, let’s recall the setting of [17], [18]. Let T be a
link diagram of a link 7 in R?, which is transverse to the y-axis. The y-axis divides T into
two parts: a left tangle T and a right one T, Two left (right) tangle diagrams will be
equivalent if they are related by an ambient isotopy of R? preserving the y-axis pointwise

and a sequences of the three Reidemeister moves.

Labeling each arc f between two crossings, or the boundary, of the tangle diagram ?
with a formal variable xy, we form the polynomial ring P = Zs[zf|f € ARC(?)] where
ARC(?) denotes the set of arcs of T'. The field of fractions of Pz will be denoted F=. The

same thing can be done for ? to get Fs.

We then associate to each right (left) tangle diagram T (respectively ?) a bigraded vector
space [[?)) over F=» (respectively (%]] over [F+), generated by a collection of states (r,s),

described as follows:

1. ris a pair (7, p) (respectively (p, nt)) where T (m#) is a specific representative of
its equivalence as a left (right) planar matching (a left (right) planar matching is a
collection of n embedded arcs in the left (right) half plane whose boundaries are the

intersection points of T (?) and the y-axis) and p is a resolution of T (?)
2. s is a decoration on each circle of i U p (respectively p U i) by either 4 or —.

In [17], L. Roberts defines a type D structure @ on [[?}) over a differential graded algebra
(BI',,,Z,,) such that the homotopy class as a type D structure of ([[?), 3) is an invariant
of ? Inspired by the idea of the twisted tangle homology [20], we will define a (0,—2)
“vertical" type D structure @ on [[?)) With respect to the bigrading of [[?) and BIl,,,
5_T) is a degree (1,0) map while (5_; is a degree (0,—2) map. By collapsing the bigrading
using the formula ( = i — j/2, both (?T and @ become degree 1 maps. Note that this is

the usual d-grading on Khovanov homology but we will not use ¢ here since it overlaps the



notation of the type D structure 5_>T We will also prove that @ commutes with @ in a
sense that (?: = <5_T> + @ is a type D structure on [[?» (see Proposition 29). Furthermore,
using a trick to move weights (the formal variables labeled to the arcs) and definitions of
stable A.-homotopy equivalence and stable D-homotopy equivalence (see Chapter 9), we

will prove the following theorem in Chapter 10 :

—
Theorem 1. The stable homotopy class of the type D structure ([[?}), dre) is an isotopy

inwvariant of the tangle defined by ?

Additionally, in Chapter 7, using the cancellation lemma, we will get a type D structure
—

homotopy equivalent to (] ?), dr.) supported on states which do not contain any free circles

(a free circle is the one which does not intersect with the y-axis). The collection of such

states will be denoted STn(?). We also denote:
ﬂﬁ) 1= spanp_{(r,s) € STn(?)}.

—
We will describe a type D structure dr, on [[(ﬁ ), which is a deformation retraction of

([[?),(?.)) The map
S [CTY — BT, @7, [CTY[~1]

is defined by specifying its image on each generator (r,s) € STn(7) as

571—771)(707 5) = Z(r’,s’) <(7“, S)v (7”/, 5,)>If9(7’,8) ® (7“’, 8/) + Z B(V)

~YEBRIDGE(T)

St
+
5l
R
o
&
=
®
2

+ (
Cecir(9(r,s)),s(C)=+

These summands will be defined in Chapter 7.

As the consequence of Theorem 1, we have the following corollary:

—
Corollary 2. The stable homotopy class of the type D structure (] Cﬁ), drn) 18 an invariant

of ?



In [18], associated to a left tangle diagram ? of a tangle %, there exists a differential bi-
graded module ((?]], my, mg) over (BL,,,Z,) (also called a type A structure in the language
of bordered Heegaard Floer homology [11]) where m; is a modified version of the differential
defined by M. Asaeda, J. Przytycki and A. Sikora and ms is a right action ((? |®z, BT, —
(?]] In Chapter 11, we will define a new type A structure (((?]],mly.,mgj.) where my o
is obtained from m; by adding a modified version of the vertical differential in the twisted
tangle homology. The only difference between the actions ms and mg, is the action of
left decoration elements on ((?]] In Chapter 13, we will sketch a proof which shows that

((?]], M1e,Mae) is an invariant of % in the category of A, modules:

Theorem 3. Let % be a left tangle with a diagram ? The stable homotopy class of

(((?]],ml,, Mae) as an A module is an invariant of the tangle ?

Analogous to the type D structure, in Chapter 12, we will use a simplification process
H

to obtain a type A structure ((CT'], my 1, mor) homotopy equivalent to (((?]], M0, M2e)

supported on states which do not contain any free circles. As the consequence of Theorem

3, we have the following corollary:

Corollary 4. The stable homotopy class of (((E’]],mLT,mlT) as an As, module is an

invariant of ?

Using the gluing theory described in [11, Section 2.4|, we can pair the type D structure
s
([[7), dr.) and the type A structure (((?]], M1 e, Mae) to form a chain complex whose un-

derlying module is ((?]] ®1, [[7) and differential is defined by the following formula:

S
02 (r ®y) = mue(2) @y + (M0 @) (2 @ dra(y)).

Let T be the link diagram obtained by gluing ? and 7 along their end points. In Chapter

14, we will prove one of the main theorems of this paper:

Theorem 5. (((?]] ®1, [[?}), 8%) is chain isomorphic to ([T],0) where ([T],0) denotes the

totally twisted Khovanov chain complex associated to T'.



1.1 The structure of this thesis

In Chapter 2, we recall the definitions of Kauffman bracket, Jones polynomial, and Khovanov
homology. We also sketch the ideas of a spanning tree complex in Khovanov homology
and bordered Khovanov homology. In Chapter 3, we recall the definition of the cleaved
algebra BI',, in [17] with two minor modifications: the ground ring Z, instead of Z and the
requirement on decorations of marked circles. In Chapter 4, we construct the expanded
complex [[7}) and recall our main result for the twisted tangle homology. It will be followed
by the construction of the “vertical" type D structure ([[?}), @) in Chapter 5. In Chapter
6, we will prove that 57: = 5 + @ is a type D structure on [[?) We, next, will define the
map (Sn—; and prove that ([[Cﬁ}), (ﬂ) is a deformation retraction of ([[?), (ﬁ) in Chapter
7. The proof of Theorem 1 will be described in Chapter 10 by using a trick to move weights,
described in Chapter 8. The whole Chapter 9 is devoted to establishing the definitions of
the stable homotopy equivalence of type A and type D structures. In Chapter 11, we define
the type A structure (((?]],ml’.,mgy.). After that, we will define the type A structure
(((C<’—T]],m17T, mor) and prove that it is A, homotopy equivalent to (((?]], M1e,Mas). We
will sketch the proof of theorem 3 in Chapter 13. The relationship between the totally
twisted Khovanov homology and the chain complex obtained by pairing our twisted type A
and type D structures will be described in Chapter 14. In Chapter 15, we will give examples

calculating our type D and type A structures for several knots and links.



CHAPTER 2

PRELIMINARIES

2.1 Kauffman bracket and Jones Polynomial

Consider a link diagram L of an oriented link £, embedded in S3. The set of crossings of L
is denoted by CR(L). In Figure 2.1, the picture on the left (respectively right) represents a
— (respectively +) crossing. The numbers of positive and negative crossings will be denoted
ny and n_ respectively. First of all, we recall the definition of Kauffman brackets associated

to link diagrams:

Definition 6. The Kauffman bracket is a function from link diagrams to Laurent poly-
nomaials with integer coefficients in an indeterminate q. It maps a link diagram L to

(L) € Z[q™ ', q|, characterised by three following formulas:

y O =g+t
i OL) =wreH (D
iy OO0 == ¢00

Using the numbers of positive and negative crossings of L, the Jones polynomial of L is

S AN
/ N

Figure 2.1: Negative and positive crossings.



defined to be J(L) = (—1)"-¢"+ 2" (L). The Jones polynomial can be proved easily to be

invariant under Reidemeister moves I, IT, and TII. Therefore, we obtain the following result:
Theorem 7. The Jones polynomial J(L) is an invariant of the oriented link L.

To compute Jones polynomial of a link diagram L, one can start at one arbitrary crossing
c. Using the third Kauffman bracket relation, we then can express (L) in terms of (L) and
(Ls) where Ly and Ly are obtained from L by resolving c¢. By induction, we repeat this pro-
cess until there is no crossing to resolve. We then use the first and second Kauffman bracket
relations to compute (L) and thus J(L). We denote n = n, + n_ the number of crossings
of L and index the set of crossings in an arbitrary order. A complete resolution of L is a
collection of circles on a plane, obtained by a choice to resolve each crossing by either 0 or
1 resolution (in the third Kauffman bracket relation, the left and right pictures in the right
hand side describe 0 and 1 resolutions respectively). Equivalently, a resolution r is a vertex
of the cube {0, 1}". Thus, r will stand both for the resolution diagram and for the indicator
function for the set of crossings defining the resolution. We denote h(r), called the height
of r, the number of 1 resolutions. If r has k(r) disjoint circles in its resolution, the sum-
mand of Kauffman bracket corresponding to this resolution will be (—1)"")g"(") (g4 g=1)*),

Therefore, if we denote RES(L) the set of resolution of L, then we have the following formula:

J(L) = (=1)"g™ Y (=)0 (g + g7 )R, (2.1)

2.2 Khovanov homology

On the other hand, the motivation of the construction of Khovanov homology is to try
to interpret the Jones polynomial as FEuler characteristics of some homology theories. To
describe Khovanov’s construction, we first recall the notations for the graded dimension and

the degree shifts:

Definition 8. Given a bigraded R-module V = @V, ; where R is a ring, the graded dimen-

8



sion of V' is a Laurent polynomial P(V) = 3" ¢/dimV; ;.

Definition 9. Let M = @ycpn My be a ZF-graded R-module where R is a ring, then M [
is the ZF-graded module with (M[w))y = My_g.

is the graded dimension of a bigraded two dimen-

By a simple calculation, we see that ¢+¢q~
sional vector space V with two basis elements v+ whose degrees are (0, £1) respectively. We
then associate to each resolution r € RES(L) a bigraded vector space V, = V®*[h(r), h(r)]
where k is the number of disjoint circles in r and h(r) is the height of r. Note that, a
generator of V can be thought of as being the set of circles in r provided with a way to
decorate each circle in r by either + or —. Define [L]™ := €D, cpps(1) nrj=m Vr to be the
m-~chain group of complex [L] and let C'(L) := [L]{—n}[ny — 2n_]. Before recalling the
differential d of this complex, we have a remark from the relationship between this complex
and Jones polynomial. From the construction, it is straightforward to see that ignoring the

sign, the graded dimension of V, is exactly its portion in Kauffman bracket of L. Therefore,

we have the following theorem which can be found in [3, Section 3]:

Theorem 10. If the differential d of (C(L),d) preserves the second degree, the graded Euler
characteristics x(C(L)) of C(L), defined to be the alternating sum of the graded dimensions

of its homology groups, is the Jones polynomial of L:

As the next step we recall the construction of the differential d. It suffices to define the
image of d on each generator (r,s) of V., where r € RES(L) and s is a decoration on the

circles of r. We define:

d(r,s) = Z (—1)Z°‘1<c"(cl)dc(r,s)

cecr(L)
where 1) d.(r,s) = 0ifr(c) = lor2)if r(c) = O then d.(r,s) = > (7¢, So) where . € RES(L)

obtained from r by changing the resolution at ¢ from 0 to 1. s, is calculated in terms of s



by defining s,(C) = s(C) if C' is not abutting ¢ and the signs on other circles is defined as

following:

1. Resolve ¢ from 0 to 1 merges two circles of r then we use:

U+®U+—>U+
Vp @U_ —> U_

V- ® Uy — U

v @u_ — 0.

2. Resolving ¢ from 0 to 1 splits a circle of r into two circles of r, then we use:

A Vp — U3 QU_ +v_ Qug

V. — U_ R U_.

It is not hard to check that d is a differential, preserving the second degree and thus, it turns
out that (C(L),d) encodes the information of the Jones polynomial of L. Additionally, we

even have stronger result:

Theorem 11. [7] The homology group H™(L) of (C(L),d) is an invariant of L that encodes

the information of the Jones polynomial.

Remark 12. If L is equipped with a marked point p € L and L is a generic projection of
L, taking p to a non-crossing point, we will have the reduced version of Khovanov homology
supported on generators whose decorations on the marked circle (the one which contain the
marked point) are —. Without an abuse of notation, we will still use (C(L),d) and H* to

stand for the reduced Khovanov chain complex and its homologies.

2.3 Tait graph and the totally twisted Khovanov homology
We first recall the definition of a Tait graph associated to a link diagram L.

10



(D~

Figure 2.2: The Tait graph of 8-figure knot

Definition 13. Given a link diagram L, its Tait graph is obtained by first checkerboard
coloring the faces of L by white and black colors, then taking the black faces as wvertices.
Fach crossing in CR(L) will provides an edge between two vertices since it abuts one or two

black faces.
Example. We illustrate the Tait graph of 8-figure knot as in Figure 2.2.

Remark 14. A set of resolutions of L will be 1 — 1 corresponding to a set of subgraphs
of the Tait graph associated to L. Indeed, each crossing is corresponding to an edge of the
graph and resolving a crossing by either 0 or 1 resolution will locally split or merge black
regions. Therefore, each resolution is determined by a specific choice to resolve diagram’s
crossings and this choice will determine the subgraph. Note: resolutions which contain only

one circle will be corresponding to a spanning tree subgraph of the Tait graph.

As we can see from the construction of the (reduced) Khovanov homology, its generators are
found by using exponentially many ways a link diagram can be resolved. Therefore, to have
a better understanding of this complex, it is reasonable to find a deformation retraction of
it. In fact, A. Champanerkar, I. Kofman in [5] and S. Wehrli in [25] proved that there exists
a chain complex, generated by spanning trees, whose homology is the reduced Khovanov
homology. However, they did not fully describe the formula of the differential. Following the
work of L. Roberts ( [19], we briefly recall the construction of the totally twisted Khovanov

homology (the detail is similar to the twisted tangle case, described in Section 4.1):
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1. Label each arc, not contains marked point p, of L with a distinct formal variable x .

Let Iy, be the field of rational functions Zs|xf|f is an arc of L]. Denote (KT'(L),0xn) =

(C(L) @ Fr,d®1,). Note that dx g is (+1,0) differential.

2. There is a vertical Koszul (0, —2) differential &, on KT(L), determined by its image

on each generator (7, s) as following:

oy(r,s) = Z we(r, sc)

Cer,s(C)=+

where we is the sum of weights on C' and s¢ is obtained from s by only changing the

decoration on C from + to —.

We state the main theorems of the totally twisted Khovanov homology:

——%+1,%

Theorem 15. [19] Let Oxy : KT (L) — KT ' (L) be the Khovanov differential and let
dy: KT (L) — W*’*Q(L) be the Koszul differential. Then 0 = Oxp + 0y s a differential
on KT(L). Furthermore, if we collapse the bigrading to singly grading by using the formula

§ = 2i — j, then & will provides a grading to the complex (KT(L),0).

The complex (KT (L)[—n(L)],0) is called the totally twisted Khovanov complex and we

denote the homology of this complex (with respect to d-grading) by HT,(L).
Theorem 16. [19/ The homologies HT (L) is a stably invariant of isotopy class of L.

One of the distinct advantage of this type of chain complex is that by using the Gauss elim-
ination method, we can find a deformation retraction (CT(L),d;) of (KT(L)[—n,(L)],0)
supported on the generators which corresponds to the spanning trees. Here, we only briefly
describe the formula of differential 0; without further comments. More properties of this
spanning tree complex can be found in [19]. Tt suffices to define the image of J;, on the

spanning tree generators. Let r be such generator, then:

op(r) = Z(r, )T

T1
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where ry is any spanning tree generator, obtained from r by changing two crossings c;, ¢

from 0 to 1. Additionally, let r., be a resolution obtained from 7 by changing the resolution

at ¢; from 0 to 1. r., has two disjoint circles and we denote the non-marked circle by C;

(1 =1,2). Then, we have:

1 1
+

wcl U)C2

(ryr) =

Despite the fact that the relationship between the reduced Khovanov homology and its
twisted version is not well understood for the link case, in the case of knot, thank to the

work of T. Jaeger, we have the following theorem:

Theorem 17. [23] If K is a knot diagram of knot KC with a marked point p, as 0-grading
complex, the reduced Khovanov homology is chain isomorphic to its totally twisted Khovanov
homology:

(KT(L), 0xn) = (KT(L), Oxcrr + ).

2.4 Bordered Khovanov homology

From a different perspective, in [2]|, M. Asaeda, J. Przytycki, and A. Sikora extented the
Khovanov constrution to associte to each tangle 7 embedded in I-bundle over orientable
surfaces a chain complex (C(T'), daps) whose homologies are isotopy invariant of 7. There-
fore, there is a natural question about whether or not we can recover Khovanov homology of
links from the homology of its tangle components. This question is answered by L. Roberts
by modeling off the ideas from bordered Heegaard Floer homology. Despite the fact that
the M. Asaeda, J. Przytycki, and A. Sikora’s construction does not allow one to recover
the original Khovanov homology of 7T, its module will play an essential role in Roberts
construction. Let’s consider a link diagram L, obtained by gluing two tangles ? and ?,
we will see in Chapter 5 that C’(?) and C(?) will be the “core" of its expansion ((?]] and
[[?) ( the arrows here indicate the left and right tangle components of L. We now will give

an example to illustrate the main idea of bordered Khovanov homology: the gluing process.
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Figure 2.3: A link obtained by gluing two tangles.

Let’s consider a link L and think of it as being glued by two tangles (see Figure 2.3 for an
example). The generators of complex C(L) are obtained by smoothing each crossing of L
by either 0 or 1 and then, decorating the planar circles by 4. Such generator £ might look
like the left top corner in Figure 2.4. If we strip out the free circles, which do not intersect
the y-axis, on one side and still keep track of what is going on another side, we will get
the pictures at the right top and left bottom corners. These pictures will correspond to a
generator ? of [[?) (the module associated to the right tangle) and a generator % of (?]]
(the module associated to the left tangle). As we can see, £ is a result of gluing ? and
? along their “boundary"-the right bottom corner picture obtained by stripping off all free
circles of . Therefore, if we let the latter diagram to be the idempotent in BT, (described
in the next chapter) which acts on two states as the identity and let Z be the idempotent
subalgebra, ((?]] ®7 [[?) = C(L).

Now, we will recall why the idea of bordered Heegaard Floer plays a role here. We note that
the differential of Khovanov chain complex is contributed by changing types of resolution at
right or left crossings. However, these contributions might change the idempotent and thats
why there should be an appropriate map on the right tangle:? : [[?) — BI'), ®1 [[?)
which records the change of idempotents and satisfies type D structure equations as in [11].

On the other hand, on the left tangle, the maps which reflect the action of the change

14
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e

Figure 2.4: This figure illustrates how to obtain a generator from the left and right tangles.

of idempotents are defined to satisfies type A structure equations. Using a gluing process
in [11], we can pair the type D structure of ? and the type A structure of ? to recover

Khovanov chain complex of L (see [18] for detail).
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CHAPTER 3

RECALL THE DEFINITION OF THE ALGEBRA FROM CLEAVED
LINKS IN [17]

Let P, be the set of 2n points p; = (0,1), po = (0,2),..., p2n, = (0,2n) on the y-axis.
In [17, Section 2|, Roberts associates P, with a bigraded differential algebra BT, (over Z)
equipped with a (1, 0)-differential dr, which satisfies a Leibniz identity.

In this chapter, we will recall the definitions and properties of (BT, dr, ). As we mentioned
earlier, we will replace the ground ring Z by Z, in our definitions and thus, we do not need
to worry about the sign issues.

We denote the closed half-planes R x (—o0, 0] and Rx [0, c0) by H and H respectively. Since
BT, is described by generators and relations, we first recall the definitions of its generators

and then rewrite the set of the relations, ignoring the signs.

Definition 18. [17, Section 2] An n-decorated, cleaved link (L,o) is an embedding of

disjoint circles in R? such that:
1. Fach circle contains at least 2 points in P,,
2. LN{0 X (—o00,00)} = Py,
3. o is a function which assigns either + or — to each circle of L, called decoration.

Let CIR(L) be the set of circle components of L. We call py, the marked point and the
circle of L which passes through the marked point is called the marked circle. We denote
the marked circle by L(x). We then denote CL) the set of equivalence classes of n-decorated,

cleaved links whose decorations on the marked circle is —.
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Definition 19. [17, Section 2] A right (left) planar matching M of P, in the right (left)
half plane H (ﬁ) is a proper embedding of n-arcs «; : [0,1] — H (ﬁ) such that «;(0) and
a;(1) belong to P,.

— —
L can be obtained canonically by gluing a right planar matching L and a left one L along
P,. We denote the equivalence classes of right and left planar matchings by MATCH(n; and
S .

MATCH(n) respectively.

We next describe the definition of a bridge of a cleaved link.

Definition 20. [17, Section 2] A bridge of a cleaved link L is an embedding of v : [0, 1] —
R*\{0 x (—o00,00)} such that:
1. v(0) and (1) are on distinct arcs ofz> (or T

),
2. v(0,1)NL=0.

Depending upon the location of v, v is called either left bridge or right bridge. Two left
(right) bridges 71 of Ly and 79 of Ly will be equivalent if there is a planar isotopy of ﬁ
(ﬁ), fixing OH, which takes 7; into v, and fl (ﬁ) into E (L_i) The equivalence classes of
bridges, left bridges and right bridges of L are denoted by BRIDGE(L g{ and BR (L)
respectively.

A generator e of BI',, can be thought as an oriented edge in a directed graph whose source
and target vertices, denoted by s(e) and t(e), are decorated cleaved links (see [17, Section 2]
for more detail). Corresponding to each (L,o) € CL;, there is an idempotent Iz 5 € BI',,.
Let Z,, denote the sub-algebra generated by the idempotents /(1 ). BI', is freely generated
over Zs by the idempotents and the following elements, subject to the relations described

below:

1. For each circle C' € CIR(L) where o(C') = +, we have a “dual" decorated cleaved link
(L,0¢) where o¢(C) = — and o¢(D) = o(D) for each D € cIrR(L)\{C}. There are
two elements && e and ?C called right and left decoration elements, whose sources are

(L,o) and targets are (L, o¢). C is called the support of & and éc.

17



2. Let v € BRIDGE(L), then there is a bridge element e, .y Whose source is (L, o) and
target is (L., o,) where L, is obtained from L by surgering along v and o, is any
decoration compatible with ¢ and computed from the Khovanov Frobenius algebra.
Additionally, €(y..0.) is called a left (right) bridge element if v € E(L) (]?{(L)) and
will be denoted by a (Z,)) if the context is clear. Note that L, has a special bridge

~" which is the image of the co-core of the surgery.
With these generators and idempotents, we have:
Proposition 21. [17] BT, is finite dimensional.

Furthermore, BI',, can be bigraded as in [17]. In this paper, we collapse the bigrading by
using ((7,7) =i — j/2 to give a new grading on BI',,. On the generating elements, the new

grading is specified by setting:

Iey — (0,0) — 0.

e —(0,-1) —1/2.
o —(1,1) —1/2.
e —(0,-1/2) —1/4.
& —(1,1/2)  —3/4

This assignment provides the grading to every other element by extending the grading on
generators homomorphically.

Based on the above set of generators, there is a set of commutativity relation of generators,
divided into the following groups:

Group I-Disjoint support and squared bridge relations:

We describe the set of relations in this case by using the following model:

€a€p = €3€Ey! (31)

18



We require that e, and e, are the same type of elements (decoration or bridge) and they
also have same locations (left or right). The same requirements are applied for the pair eg
and egr.

Let (L,o) € CL;, such that I ) is the source of both e, and ez, we have the following

cases:

1. If C and D are two distinct + circles of (L, o), there are two ways to obtain (L, o¢ p)
from (L, o) by changing the decoration on either C' or D from + to — first and then
changing the decoration on the remaining + circle. The recorded algebra elements for

two paths will form a relation.

2. If eq = €(y,,0) for a bridge v in (L, o) and eg is a decoration element for C' € CIR(L),
with C' not in the support of v, due to the disjoint support, there will exist e, =

o . : , :
€(yocol) and eg which is a decoration element whose source is (L., s') and target is

(L, 80)-

3. Given any bridge v of L. Let By(L,7) denote the set of bridges of (L,~) neither of
whose ends is on an arc with 7. If e, = €(y,0,0) and eg = €(;, 4,0 are bridge elements
for distinct bridges v and n in (L,0), with n € By(L,7) and ey = e, and

o = €(y,o7 oy for some decoration ¢ on L, ,, we obtain a commutativity relation.

pEUR

4. I eq = €7 40y and eg = €7 5, are bridge elements for distinct right bridges v and
nin (L,0), and ey = €T o o) and ey = €z 7 oy , such that L, s = L, and some

compatible decoration ¢, it will form a commutativity relation.

5. Let 5 be a left bridge of L. Let B,(L, %) denote the set of bridges of (L, %) one of

whose ends is on the same arc as <7 and lying on opposite side of the arc as <7 If

Ca = €5 00 and eg = e 5, are bridge elements for distinct left bridges in (L, o),
with ? (- BO(L’ <7)7 and €p = 6(%’0_/’0”,)7 Cot = 6(%701110.///) with L’Y:5 = me, and some

compatible decoration ¢”, we form a commutativity relation.
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Group II-Other bridge relations:

1. Suppose v € ﬁ{(L) and 1 € By(L.,~") where By(L,,~") consists of the classes of

bridges all of whose representatives intersect 47, then
€(r.0,0) (070" = U

whenever ¢’ and ¢” are compatible decorations.

2. The second possibility is that ‘& € B,(L, %) where B,(L, %) stands for the set of
bridges one of whose ends is on the same arc as <7 and lying on same side of the arc as
<7. There is a natural left bridge <7 by sliding & over % In this case there are three
paths from s(&&5) to t(&,€5) and they will form a relation whenever the decorations

are compatible:

S+ e +EE =0

<_
where ¢ and ? are the images of @ in L; and in L respectively.

3. If there is a circle C' € CIR(L) with ¢(C) = +, and there are elements ?(%070/) and

—

?wm%) for a bridge v € BR(L) then

o @

€ (v,0,0") € (v1,0'0¢c) = €C-

Such a circle C' is unique for the choice of v and ¢’ and is called the active circle for

Y.

Group IIT-Relations for decoration edges:
When the support of ec is not disjoint from the bridge v of e(,,¢,5. ), the relations are different

depending upon the location of ec.
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1. The relations for e2: If C; and C, are two + circles in L and v is a bridge which

merges C7 and C5 to form a new circle C', we then obtain the following relation:

— _ _ —
€C\M(y,00,,00) = €C2M(y,00,,00) = M(v,0,0,)€C

Similarly, if C'is a + circle in L and + is a bridge which divides C' into C and Cj in

CIR(L,), then we impose the relation:

— — —
e¢ frocwe) = faoonyec = fro02)€cs

where Ufy assigns + to C; and — to C5_;.

2. The relations for e%: Since there are two types of decoration elements, in the above
relations, if we replace the right decoration elements by the left ones, we obtain the

following relations:

ST

Clm(’Y7O'C1 7UC) + %m(’YvUC'Qﬂ—C) + m(’%o-vo-"/) = 0

gc’f('YaUCvo'C,’Y) + f(’YﬁvU—ly)%l + f(’y,a’,a’,%)% =0.

The main result about BT, in [17] is:

Proposition 22. Let (L,0) € CL;, such that there is a circle C € CIR(L) with o(C) = +.

Let & be the decoration element corresponding to C. Let

an (?C) - Z 6("/,0’,0'7)6(7T,Uﬁ/,oc) (32)

where the sum s over all v € ﬁi([/) with C' as active circle, and all decorations o, which
define compatible elements. Let dr,(e) = 0 for every other generator e (including idempo-

tents). Then dr, can be extended to an order 1 differential on the graded algebra BT, which
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satisfies the following Leibniz identity:

dr, (af) = (dr, (@) 8 + a(dr,(8)). (3.3)

(BT, dr, ) denotes this differential, graded algebra over Zs.
Note. Because we require the decoration on a marked circle is —, our BI',,, described above,

is actually a subalgebra of BI',, defined in [17].
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CHAPTER 4

TWISTED TANGLE HOMOLOGY AND ITS EXPANSION

4.1 Twisted tangle homology

In [20], the author and L. Roberts define a twisted Khovanov homology version for tangles
embedded in thickened surfaces by twisting the reduced Khovanov tangle chain complex,
defined by M. Asaeda, J. Przytycki and A. Sikora in [2].

Let T C H = [0,00) xRx {0} be a tangle diagram for an oriented tangle T c 0, 00) xR? C
R3. The set of crossings in 7 will be denoted CR(?). An arc is a segment between two
crossings, or the boundary, of the tangle diagram ? and the set of arcs of the tangle diagram
T will be denoted ARC(?). The number of positive crossings will be denoted n+(?) and
the number of negative crossings will be denoted n_(?) We will often omit the reference
to ? when the choice of the diagram is clear.

Following [19], [20], we label each arc f € ARC(?) with a formal variable z; and form the

polynomial ring P = Zy[zy|f € ARC(?)]. The field of fractions of P= will be denoted F=.

Definition 23. For each subset S C CR(?), the resolution pg of ? s a collection of
arcs and circles in ﬁ, considered up to isotopy, found by locally replacing each crossing
s € CR(?) according to the rule as in Figure 4.1

The set of resolutions for ? will be denoted RES(?). For each resolution p, denote by h(p)

the number of elements in the corresponding subset S C CR(?).

Given a crossing ¢ € CR(?) and a resolution p = pg, we will also use the notation p(c) =0
for ¢ ¢ S and p(c) = 1 for ¢ € S. Thus, p will stand both for the resolution diagram and for

the indicator function for the set of crossings defining the resolution. The local arc 8 which
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Pl X )<

Figure 4.1: A rule to resolve each crossing locally

shows up when we resolve the crossing c is called a resolution bridge. Depending on the
value of p at ¢, which is either 0 or 1, 3 is active (colored red) or inactive (colored green)
respectively.

We denote pg = p U {c} if B is active and the notation is just not used when f is inactive.
Furthermore, let BC(p) be the set of circles and arcs in p while nT; stands for the planar
matching obtained from p by deleting all of circles in BC(p). The set of circles of p will be
denoted by FCIR(p).

We next assign a weight to each circle (or arc) in a resolution by adding the formal variables

along each circle (or arc) (See Figure 4.2 for an example).

Definition 24. Let p be a resolution for ?, then for each C' € BC(p), we define:

w—g': Z Zf.

f€Arc(C)

For each resolution p(?), let FCIR(p) = {CY, ..., Cx}. To each C;, we associate the complex

we;
0—Fzv, —Fzuv. —0

where vy occur in bigradings (0,41). The differential in IC[C;] will be denoted Oc,.

Then we associate p with the bigraded Koszul chain complex defined as
(K(p), Ox(p) = (K[CH], 0cy) ®p, (K[Co], Oc,) @, - -+ ®p, (K[Ch], Ocy,).
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Figure 4.2: This figure illustrates how to assign weights to circles and arcs of a resolution.
In this example, the far right picture represents a resolution of the tangle diagram. The
weight of the free circle is x5 + x3 while the weights assigned to the top and bottom arcs
are x3 + x4 + x¢ and x5 + x7 + xg respectively.

Because we need to shift the gradings, we use the following notation:

Definition 25. Let M = @yeyr My be a ZF-graded R-module where R is a ring, then M{}
is the ZF-graded module with (M{w})y & My_gz.

The vertical complex for the resolution p of the tangle diagram ? is defined as:

where the differential 0y, will change the bigrading by (0, —2).

We now define a bigraded chain group:

CAPS(?)Z @ V(p).

p€RES(7)

CAPS(?) is a bigraded chain complex with a (0, —2) differential:

= P o

pERES(?)

Additionally, in [2], M. Asaeda, J. Przytycki and A. Sikora define a (1,0) differential dspg
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on this bigraded module, satisfying:
aApg% + 8{;0;1]35 = 0.

Therefore, by collapsing the bigrading using ((i,j) = i — j/2, we can make daps + 0, a
differential on CAps<?>. Furthermore, since both d4ps and 0, are constructed to preserve

the right planar matching, we can decompose:

(Caps, Oars +3)) = B (CAPS(?a m), 0apsm + %) m)-
meMarcH(n

We now can describe the main theorem of [20]:

Theorem 26. For each m € MATCH(n;, the homology H.(Caps, Oapsm + Oy,,), as a rel-

ative (-graded module, is an invariant of the isotopy class of ?
Following |17, Section 3.2|, we first expand the chain group [[?)

Definition 27. Given (L,o0) € CL, let

OAPS(?,Z),O) = C’APS(?’_) i(L, o)

and

where i(L, o) is computed by subtracting the number of — non-marked circles in L from the

number of + circles in L.

We also denote:

daps = @ 8AP5,E’

(L,o)eccs,

= P 0,7
(

L,o)eCLs,
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As we can see, a generator of [[?» corresponds 1-1 with a triple (T, p, s) where 2 is
a specific representative of its equivalence as a left planar matching, p is a resolution of
T and s : CIR(m#p) — {+,—} such that s(fn#m,(x)) = —. Here CIR(#p) is the
collection of all cleaved and free circles of f#p.

We denote r = in#p and we call (r,s) a state. The collection of states of ? will be denoted
STATE(?). d(r, s) denotes a decorated cleaved link, obtained by deleting all of the free
circles of Tn#p and the decoration of this cleaved link is induced from the decoration s on

cIR(T#p). Therefore:

(Ty= P P Fzlrs).

(Lyo)ecLs, a(r,s)=(L0)
Additionally, each state (r,s) = (n#p,s) has a (-grading, computed from a bigrading
(h(r,s),q(r,s)) where h(r,s) = h(p) —n_ and q(r,s) = h(p) + @ + #(+ free circles) —
#(- free circles) + ny —2n_.
Note. The whole process can be applied exactly the same to give the construction of the
expanded complex (?]] associated to a left tangle T

In the next chapter, we will describe a “vertical" type D structure on this underlying module

[[?) with respect to the (-grading.
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CHAPTER 5

A TYPE D STRUCTURE IN THE TWISTED TANGLE HOMOLOGY

Using the idea of the twisted tangle homology, we will describe a way of twisting Roberts’s

type D structure on [[?) |17].

ﬁ
Before defining a “vertical" type D structure 6y on ﬂ?)), we have the following remarks:

L. [[7) is a left Z,-module, defined by the trivial action: Iz (r,s) = (r,s) if O(r,s) =
(L,o) or 0 else.

%
2. In the below definition of ), and elsewhere in this paper, BT, stands for BI',, ®z, F=.
Note that BI', ®z, F= has a differential graded algebra structure over F=, induced by
the differential graded algebra structure over Zs of BT, (this fact will be mentioned

in Chapter 9).

3. If C'is a + cleaved circle of a state (r,s), (r, s¢) denotes a state obtained from (r, s)
by changing the decoration on C' from + to — and using the same decorations for

other circles. Therefore, if O(r,s) = (L, o) then d(r, s¢) = (L, 0¢).

Given [[?}) equipped with the (-grading, we define a left Z,-module map:
_>
5 [T') — BT, @, [T )-1]

by specifying the image of dy, on each generator £ = (r,s) of [[?)

%
oy (r,8) = Tore @ (1, s) + weed @ (r,5¢). (5.1)

Cecir(9(r,s)),s(C)=+
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The bigradings of the terms Iy.s) ® Oy are decreased by (0,2) because the bigradings of
idempotents are (0,0) and 0y is a (0, —2) differential. Therefore, the (-grading is increased
by 1. Similarly, since the (-grading of e¢ is 1/2 and ((r,s) — C(r, s¢) = 1/2[i(L,0)/2 —
i(L,00)/2] = 1/2, the ¢-gradings of the terms e@ ® (r, s¢) are larger by 1. As a result, @
is (-grading preserving.

Next, we prove the following proposition:

%
Proposition 28. &y is a type D-structure on [[?) :
—. = —
(usr, @ L)1 @ 6v)dy + (dp, @ 1)y = 0.

Proof. Since the image of dr, on idempotents or right decoration elements equals 0, it

suffices to verify that:

— =
(psr, @ 1a)(L® dy)dy(r,s) =0

for each generator £ = (r,s) of [[?))
%
Since the image of dy(r, s) contains states (r,s¢) (with coefficients in BI',), the image of
— =
(I® dy)dy(r, s) are the states (r, s¢, ,) where the decoration s¢, , of r is obtained from s by

changing the decoration on C4,Cy € CIR(r) from + to —. Therefore, we have:

— .=
(,UBFTL ® Hal)(]I ® 6V)5V (Ta S) = Z A(T,SCI’Q)(r7 50172>'

C1,C2€cIr(r)
C1#£Cy

We will prove that each A, . ) = 0. Since each circle in CIR(r) is either cleaved or free,

we have the following cases:

1. Both € and () are free circles, there are two ways to obtain (7, s¢, ,) from (r, s):

) weq 18(7‘,3) wCQIa(r,s)

(T‘, S (7”, 801) (T‘, 3014,2)

u)—cgla(,,"s) ’w—CfIB(T,S)
(r,8) ——— (r,80,) ——— (1,8¢,)-
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Therefore, Ags., ,) = (we,we, + U}—ng—ci)fa(r,s) = 0. Note that the elements above

the arrows indicate the algebra elements in BT,,.
2. (] is free and Cs is cleaved. We have two following paths:

wey La(r,s) Wy eoy

(T78) — (T7 801) E— (T, 301,2)

, , —
WCqy€eCy weq 16(7‘,302)

(T7 S) E— (T7 502) S (Tv SCLQ)

and therefore,
— —
T750172) + wclw02[8(7’,801)602 - O'

3. Both (' and Cy are cleaved circles. We have:

— —
wey ecy Wy €Cy

<T75> - (Tv 501) E— (Tv 501,2)

|
|

Q
Q

|
|
|

P ——d
(r,s) T S TN (r,s0,) Tt (1,80, ,)-
1 y9CT 2

g
Q
g

By Relation (1) in the Group I, we have eciec, +ec e, = 0. Therefore, Agrse, ) = 0.

&

In [17, Section 5|, L. Roberts defined a type D structure @ on the bigraded module [[?),
which is bigrading preserving into BI', ®z, [[?»[(—1, 0)] and thus, is also (-grading preserv-
ing into BT, @z, [ T )[-1].

- -
As the next step, we show that ), commutes with o7 in the following sense:

— —
Proposition 29. The type D structures 6y and dp on [[?}) satisfy:
- = - =
(sr, @ 1g)(I® 6y)or + (usr, ® L) (I® é7)dy = 0.

The proof of this proposition will be presented in the next chapter. Combined with the fact
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— — — = =
that dy and dr are type D structures on [[?)}, Proposition 29 ensures that dpe = dy + or
is a type D structure on [[?) In Chapter 10, we will prove one of the main theorems of

this paper:

—
Theorem 30. The stable homotopy class of the type D structure ([[?}), dr.e) s an isotopy
wmwvariant of the tangle defined by ?
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CHAPTER 6

PROOF OF PROPOSITION 29

_>
Before proving the proposition, let us briefly recall the definition of dr defined in [17, Section
5]. For each generator (r,s) of [[?)), let

%
op(r,s) = Ippe @daps+ >, B(v)

YEBRIDGE(r)
+ > ) @ (ry,sy) + éc @ (r,s¢)
~vyEDEC(T,S) Cecir(9(r,s)),s(C)=+

where:

1. BRIDGE(r) is the union of left bridges of d(r, s) and the active resolution bridges v of
r so that the right planar matching of r, is different from the right planar matching of
r. Furthermore, B(v) is the sum of (r,, s!) where s’ is computed from the Khovanov
Frobenius algebra, with the recorded coefficient in BI',, corresponding to the bridge
element whose source is d(r,s) and target is 9(r,,s.). We note that the first row

of the below figure illustrates a term in B(7) obtained by surgering along an active

resolution bridge ~.

2. DEC(r, s) is a collection of active resolution bridges v of r such that either both feet
of v belong to the same component of C'N ﬁ where C'is a + cleaved circle of r, or
one foot of v belongs to a + cleaved circle C of r and another one belongs to a — free
circle of . In both cases, s, is computed from the Khovanov Frobenius algebra with
a condition that s,(C,) = — where C, is a cleaved circle of 7., obtained from C' by
surgering along . The second row of the below figure illustrates the case when both

feet of v belong to the same component of C'N ﬁ
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5@
Do

Figure 6.1: Examples about terms in the type D structure

Proof of Proposition 29. It suffices to prove that for each generator & = (r, s) of [[?»,

— = —. =
(NBFn ® ]Id) (H ® 5);)(51“(7’, S) + (NBFn ® ]Id) (]I ® 5T)5V<T7 S) = 0
We rewrite the left hand side as

= =
(usr, © L) (L@ 80)on(r, 8) + (usr, © L)L ® 37)om(r, 5) Z A(r', ') ')

where A(r’, ") is computed by taking the sum of products e,eg, modeled by:

e

(r,s) Loy (r1, 81) RGN (r',s).

Note that e, and eg are the elements in BT, corresponding to d(r,s) — 9(r1,s1) and
d(r1,81) — 0(r',s"), respectively. Additionally, one of them is either an idempotent or a

_)
right decoration element (this term comes from dy) and the other is either an idempotent,
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or a bridge element, or a right decoration element, or a left decoration element (this term
comes from <5_T>)

Our goal is to prove that A(r’,s’) = 0. We have the following two cases:

Case I. The term coming from % is a right decoration element . In this case, we have

the following subcases:

_>
1. The term coming from 7 is a left decoration element &5. Then (1, ) is obtained
from (7, s) by changing the decorations on two cleaved circles C, D of r from + to —.

Therefore, there are exactly two paths from (r, s) to (r/,s'):

wae ¢ ro
(r,s) —= (r,sc) —— (r',s")

&l

——
(r,8) =25 (r, sp) % (1, o)

We have: A(r',s") = w_g[%% + %%} = 0 by Relation (1) in the Group I

2. The term coming from @ is either an idempotent, or a right decoration element, or a
bridge element e, where v € BRIDGE(r), such that the support of v is disjoint from
C'. In this case, there are again exactly two paths from (r,s) to (r’,s'). Similar to
the previous case and the proof of Proposition 28, using Relation (1) or (2) in the

Group I, we can compute that A(r’,s") = 0.

%
3. The term from d7 is a bridge element e, where v € BRIDGE(r) and C'is in the support

of v. We have the two following subcases:

(a) The merging case: let C} be a cleaved circle in 9(r, s), merged with C' by merging
on v to form another cleaved circle Cy. For the path from (r, s) to (17, s') to exist,

s(C1) = +. Then, there are three paths in A(r', s'):

w_c>e_c> €y o
(r,s) ——— (r,s¢) ——— (1, §)

34



C
(r,8) = (ry, 8,) ——— (', ).

As the result, A(r',s") = Ege_éq +wcle_cl>eﬂ, + ewaQe_C;. Since we, = we;, —H_UZ,

we can rewrite: A(r,s') = wé(ede, +e,ecy)+wc, (ec, ey +e,ect) = 0, by Relation
(1) for the merging case in the Group III.

(b) The case of division: let C} be a cleaved circle in J(r, s), divided into C' and Cy
by a surgery along . For the path from (r,s) to (r',s") to exist, s(Cy) = +.

Then, there are three paths in A(r’, s'):

1TC1>€401) Cy o

(r,s) ———— (r,8¢,) ——— (r',s')
€y 2 w—C;‘%‘Z /N

(rys) ———— (ry,85) ——— (', 8)
€y w_C)e_)c /A

(r,8) ———— (1y,8,) ——— (1",§')

2

where s

(respectively s,) assigns + (—) to Cy and — (+) to C.
As the result, A(r',s') = QU—C'Ie_Cl)e'y +67w_02>6_02> + e, Wi Since we, = we, + We,
we can rewrite: A(r, s') = W (ec,ey+e4e8) + e, (e, ey +e,ect) = 0, by Relation

(1) for the case of division in the Group IIL

%
Case II. The term coming from ¢y is an idempotent obtained by changing the decoration

on a free circle C' from 4 to —. We have the following subcases:

_>
1. The term from J7 is an idempotent. In this case, we know that the product of the
weights of two paths from (r, s) to (r’, s) will be canceled out by [20, Proposition 3.6].
Therefore, A(r’,s") = 0.

%
2. The term from o7 is a bridge element e, where v € BRIDGE(r). Since the support
of 7 is disjoint from C, we only have two paths from (r,s) to (r',s') and A(r',s') =

1U—>C]8(r75)6'y + e’Y,w—g'Ia(T:S) = 0.
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3. The term from 5_>T is a right decoration element, obtained by surgery of (r,s) along
v € DEC(r, s). It is possible that the support of v is disjoint or not disjoint from C.
When the support of v is disjoint from C, the proof of A(r, s) = 0 is similar to the case
I1.2. When the support of 7 is not disjoint from C', the situation is more interesting.
Since the case of division can be handled similarly, we only present the proof of the
case when v merges a + cleaved circle D € O(r, s¢) with C to give a cleaved circle

Cy € 0(r',¢'). In this case, there are exactly three paths from (r,s) to (', s):

Io(rs —
(r,8) —20 s (ry, 59) —Ts (! )

—>I 8 —>
) =00 (rs0) —L— (1, 8)

(r,s

wpen Tar,sp) /

(r,s) —— (r,sp) ———— (1, §').
_%

Therefore, A(r',s") = (wg, + wp +@g)e_p> = 0 because &5 = €_cl> and w¢e! = wé + wp.

&
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CHAPTER 7

THE DEFORMATION RETRACTION OF THE TYPE D STRUCTURE

—
In this chapter, we will define the type D structure (] ﬁ), dp,7) described in Chapter 1 and

—
,0r.4) as type D structures.

prove that it is homotopy equivalent to ([ ?)}
Let STH(?) be the collection of states of 7' that do not have any free circles in their
resolutions. Recall that ﬂﬁ) is a vector space over [F= generated by STH(?).

We define the left Z,,-module map:

-—
5T,n

. [CT) — BT, @z, [CTY[~1]

by specifying the image of @ on each generator £ = (7, s) of ﬂﬁ)

—
dralrs) = ) ((rn9), (", N opy @ (') + Y B(Y)
(T’,S/)ESTn(?) ~YEBRIDGE(T)
+ Y, (erwbE)e(rse)

Cecir(9(r,s)),s(C)=+
where

1. The coefficient ( (r,s), (/,s') ) in the first summand is calculated from the weights
assigned to the arcs. First, { (r,s), (', s') ) = 0 unless they satisfy the two following

conditions:

(a) r is different from 7’ at two crossings ¢; and ¢y which are resolved with the

O-resolution in 7 and the 1-resolution in 7.
(b) O(r,s) = (1", s") where O(r,s) and O(r',s’) are the cleaved links associated to
(r,s) and (r', s") respectively.
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If (r,s) and (1, s') satisfy the above conditions, let ro; (r19) be the resolution where ¢;
is resolved with the O-resolution (respectively 1-resolution) and ¢y resolved with the

l-resolution (respectively O-resolution). Then:

1/we,, + 1/wg,, 10 and 74, have free circles Cyo and Cy; respectively
< (r.s). /)> 1/1@13 719 has a free circle Cy¢ but r9; does not
PR 1/1?01 ro1 has a free circle Cy; but r19 does not
\ 0 neither r1o nor ro; has a free circle.
(7.1)

2. The second summand is defined exactly the same as the second summand in the
definition of 5_T> described at the beginning of Chapter 6. We note that if (17, ') is
obtained from (r,s) by surgering along either a left bridge of O(r,s) or an active
resolution bridge v of r so that the right planar matching of r, is different from the

right planar matching of r, (37u(r, 8), (', 8')) = (3(r, ), (', ') = (dpa(r 5), (', ).

3. A state (r,s¢) in the third summand is obtained from (r,s) by changing the deco-
—
ration on a cleaved circle C of r from + to —. As we can see, (07,,(7,s), (1, s¢)) =

<(§:(7‘, 8)7 (Ta SC)> = ?C + w—>C€—C>

We, next, will recall the type D cancellation lemma whose proof can be found in [17,
Appendix Al.

Let (A,d) be a differential graded algebra over a ground ring R (characteristic 2). Let N
be a graded module over R. Suppose over R, N can be generated by a basis {z1,...,x,}.

Suppose a;; € A so that:

d(aik)—l—Zaij ajk =0 Z,k € {1,,71} (72)
j=1
and gr(a;;) = |x;| — |z;| + 1. Then the a;; can be used as structure coefficients in the

38



definition of a type D structure 6 : N — (A ®p N)[—1] defined by:

n

o(z;) = Zazj ® ;.
j=1
Lemma 31. [17, Proposition 39] Let 6 be a D structure on N. Suppose there is a ba-
sis B for N whose structure coefficients satisfy a; = 0 and ayy is invertible. Let N =
spanp{Ts,...,T,}. Then
8(@) =) (a —aay) @,

Jj=3

is a D structure on N. Furthermore, the maps

LN > AN U(T) =14 @ — ajp ® 11

0 1=1
7:N—>AQN m(x;) = ijgalj@@fj 1=2
14y ®x; 1>3

realize N as a deformation retraction of N with o7 ~y Iy using the homotopy H : N —
A® N[-1]

la®z =2

0 1 # 2.

—
) 5T7o

Proposition 32. ([ ﬁ), 6n—>T) is a type D structure over (BT, Z,,). Additionally, ([ ?) )

defined in Chapter 5, is homotopy equivalent to (ﬂﬁ», 571—;)

Proof. Let (r,s) be a state of [[?)) containing a free circle C. Then the decoration s(C') is
either + or —. Corresponding to (r, s), there is a state (r, ") of [[?}) obtained by changing
the decoration on C' from 4+ to F. We call this pair of states a mutual pair. We will use the
cancellation lemma 31 to cancel the mutual pairs (7, s) and (r, s"). Without loss of generality,

—
we suppose s(C) = +. Therefore, dro(r,s) = w_gv[a(r,s) ® (r,s)+Q = @751,% ® (r,s)+Q
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where (@) is a linear combination supported on states not equal to either (r,s) or (r,s).
Since uTéprn is invertible, we can cancel this pair to get a deformation retraction (N,0)

of ([ T),5r.

) supported on STATE(?) \{(r,s),(r,s")}. In particular, if (r1,s1) and (rq, s})

. —
are another mutual pair, (§(ry,s1),(r1,s])) = (dre

(r1,81), (r1,s}])). As a result, we can
cancel all of the mutual pairs of states and what we have left is a homotopy equivalent
type D structure 6,, supported on STn(?). We also need to verify that §,, is the same as
5717. Let (r,s), (', s") be two states in STn(?) such that (0,(r,s), (1,s)) # 0. Therefore,

—
under the action of d7 ., we have the following sequence of transitions of states in STATE(?):

(r,s) = (ro,sg) = (r1,s7) = (r1,87) = oo = (e, 85) = (Pes1, Sjpq) = (7, 87)

+

where each transition (r;,s; ) — (r;,s;) comes from a mutual pair and each transition
(ri,87) = (rig1, $iy1) corresponds to a term in (?.) We also let C; be the free circle where
s; (C;) = — and s (C;) = +. By denoting the number of 4+ and — free circles for each state
(r,s) of T by J(r,s) = (J(r,s),J_(r,s)), we see that J(r;,s7) — J(r;,s;) = (1,—1) for
each i € {1,...,k}. Additionally, we evaluate J; = J(r;41,5;,1) — J(ri,s]) as the following

cases:

+

1. If the corresponding coeflicient from O(r;,s;) — O(rit1,5,,,) is either éc or bridge

element then J; = (0,0).
2. If the corresponding coefficient is e then J; belongs to {(1,0), (0, —1), (0,0)}.

3. If this transition comes from I ® dapg, J; belongs to {(—1,0),(0,1)}.

Since (r,s), (1", s') € STn(?), we have J(r,s) = J(r',s') = (0,0). Furthermore, we have:
k
T8 = J(rs) =" [J(risi) = J(ri, 7)) + Y Ji = (0,0).
: i=0

k

Therefore, > J; = (—k, k). Looking through all of possible cases of .J;, k has to be either 0
i=0

or 1. If k=0, (r,s') is obtained from (r,s) by either changing a decoration on a cleaved
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circle from + to — or performing surgery along v € BRIDGE(r). In this case:

(0u(r,5), (7, 8)) = (Bralr, s), (7, 8)).

If k=1, we need to have 9(r,s) = O(ry,s7) = O(r1,s7) = 0(r',s'). As a result, we know
how to calculate d,,. We call a sequence of transitions an Z-transition if it is of the following
form: (r,s) — (ry,s7) — (r1,s7) — (1, s') where the states in this sequence of transitions

have the same “cleaved link" boundaries. By using the formula in Lemma 31, we have:

(Ou(rs), (o s)) = > (1/wd)op,e)-

Z—transition

Also, we see that (71, s; ) is obtained from (7, s) by surgery along an active resolution bridge
71 of r. Since (r,s) € STH(?) and a new free circle C' is created in (r1,s;), 71 has to
divide a cleaved circle C; of r into C' and another cleaved circle Cy of r;. Furthermore,
(1, 8') is obtained from (r;,s]) by surgering along an active resolution bridge 7, of r;.
Since (r',s") € STn(?), 72 merges C' to a cleaved circle D of r1. If Cy = D, there are two
Z-transitions from (r,s) to (r',s’). If Cy # D, there is only one Z-transition from (r,s) to

—
(r',s"). Therefore, 6, is dr,. <
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CHAPTER 8

INVARIANCE OF THE TYPE D STRUCTURE UNDER THE WEIGHT
MOVES

—
Following [20] and [23], we will prove that the homotopy type of ([[?)), dre) is invariant
under the following weight moves. Let 7 and 7’ be weighted tangle diagrams of a tangle
? with weighted arcs before and after the weight w is moved along the crossing ¢ as the

following figures:

@“\/% &
/ /)

-—
) (5T,o

P
) 6T/,o

).
Let D, : [[?)) — Bl',, ®7, [[?’)} be the Fz-linear map defined as follows. Let £ = (r, s) be

_>
We need to show that ([[?) ) is homotopy equivalent to ([ 7")

a generator of [[?) D.(r,s) is defined to be 0 if 7(c) = 0. If r(c) = 1, define D.(r, s) to be

the sum of element(s) e ® (1, s") such that:

1. 7’ is the resolution obtained from r by surgering along the inactive bridge v at ¢ of .

2. §(D) = s(D) for all circles D not abutting ¢ and the signs on circles abutting ¢ are

computed by using the Khovanov Frobenius algebra.

3. e is the element in BI',, whose source is O(r,s) and target is 9(r', s’). We note that
since 1’ is obtained from r by surgering a bridge on the right side, e is either a right

bridge element, or a right decoration element, or an idempotent.

Additionally, if e is a bridge element in BIl',,, we have:

C(r',s") = h(r',s") — q(r', &) /2 = [h(r, 5) = 1] = [q(r, 5) = 3/2]/2 = ((r,s) — 1/4.
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Therefore, in this case, (', s') + ((e) = ((r, s). By a similar computation, if e is either an
idempotent or a right decoration element, then (1, s') + ((e) = ((r,s). As a result, D, is
a (-grading preserving map.

Proposition 33. The map V : [[?}) — Bl', ®7, [[7’)) where W(r, s) = Iys) @ (1,5) +w -

D.(r,s) is a type D homomorphism.

— —
Proof. To ease the notation, we let §, ¢’ stand for 07, 077 respectively.

It suffices to prove:
(psr, @ 1) (I® 0" )W + (ppr, @ 1)1 ® ¥)§ + (dp, @15V =0 (8.1)

when applied to each (r,s) € STATE(?).

Since the image of ¥ does not have any term of the form & ® (rq, s1), the last term of (8.1)
will be 0. Also, the map 0 can be written as the sum: § = Dy + Dy + Er + Ep, where Dy
and Dr . are the terms in the image of ¢ obtained by surgering either one left bridge or one
active bridge at ¢; # ¢, and c respectively. Er (E7,. respectively) is the term in the image
of ¢ obtained by changing the decoration on a circle not abutting ¢ (abutting ¢) from + to
—. We can write down a similar sum for ¢": ' = D7 + Dy o + Epv + Eqv .

As we can canonically identify [[?) as [[7—%), let 6; be a D structure on [[?), which is
precisely the same as ¢’ on [[ﬁ» Note that: 0 + 61 = Er.+ Ep .

Let Iy : [[?)} — B, ®7, [[7’)} be the map defined by Ip(r,s) = Iy ® (r,5). The left
hand side of (8.1) can be written as the sum:

(psr, @ 1) (T 0 r + (usr, @ 1) (1@ 17)8 + (usr, @ L)@ §)w - D,

+(upr, @ L) A ®@w - D)6 + (usr, @ 1) ([ @ Ir)(Ere + Br.).

The sum of the first two terms will be 0 since both equal ¢’. Rearranging the other terms,
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we need to prove:

(sr, ®1)(I®6)w - De+ (usr, @1a) I@w - D)o = (ur, ®1a)AQ17)(Ere + Er ). (8.2)

By using the decomposition of 0 and ¢’, we will in turn prove the following equations:

(usr, ®1a)(I® Dpw - De + (ppr, © L) (I w - D) Dy = 0 (8.3)
(psr, @ 1a)(T® B )w - Do+ (psr, @ L) (I@ w - Do) Ep =0 (8-4)
(usr, © 1)1 @ Ep o )w - De + (ppr, @ 1g)T @ w - Do) Ere =0 (8.5)

(psr, ®14)(1Q Dpv o )w - Do+ (pgr, ®1a)(I@w - Do) Dre = (ppr, ®1a)(IQ1r)(Ere + Epv o).

(8.6)
Let T, be a tangle diagram obtained from T by switching the crossing at ¢ (left-handed <>
right-handed), but with the same locations for all the weights. There is a natural identi-
fication of [[?)} with [ﬁ)} Using this identification and the fact that D, goes backwards
from the Khovanov differential, the proof of Equation (8.3) comes from the proof that 5_Tc>
is a type D structure on [[ﬁ) Using a similar argument, we also have Equation (8.4) is
one of the cases of Proposition 29 (for the tangle diagram i) For Equation (8.5), we
remark that both terms will be 0 if r(¢) = 0 because Er . does not change the value of r(c).
(ppr, @) (1@ Ep o )w - D, will be 0 unless there is a + circle abutting ¢ in the image of D..
As a result, (usr, ® 1;)(I® B )w - D, will be 0 if one of the circle(s) abutting ¢ contains
the marked point. In this case, it is also true that (usr, ® I;)(I® w - D.)Er. = 0 because
either Fp,. is 0 or its image contains two — circles abutting c. Since D,, Er. and Ep .
only change the decorations on the circles abutting ¢, it suffices to prove Equation (8.5)
by checking all of the possibilities for the circles abutting c. We can also assume that the
circles abutting ¢ do not contain the marked point. Therefore, we have the following cases

to check:
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1. All of circles abutting c are free circles.
2. There is at least one free circle and one cleaved circle.
3. All of circles abutting ¢ are cleaved circles.

Case (1) can be done similarly to case (2) and has already been described in |20, Proposition
7.1].

For case (2), we only address the merging case (the argument for division is similar).
Let £. and £, denote the decoration on the cleaved and free circles, respectively. Then:
(usr, © 1a)(I® Eg o) De(+c+y) + (psr, @ La)(I® Do) Epo(+etr)

= (r, ® L)(1® Epr o) (Tos) ® +¢) + (usr, ® L) (1@ D) [ (€ + wéed) © —c+4

+<77f>la(7‘78) X +c_f):|

= (usr, @ 1) [Togs) @ (Ec + (W + wj)ed) @ —] + (usr, @ L) [(Ec + wied)®
[8(7",5) ® —c+ I(Ff)[a(r,s) ®¥ec® _c}

= (b + (WE + W))ed) ® — + (6c + wied) @ — + wied @ —.

=0.
If either s, = — or sy = —, then both terms will be 0 and, thus, Equation (8.5) is true.
For case (3), we will again only prove the identity for the merging case. Let 44, £5 be the
decorations on cleaved circles C;, C5 respectively and 4. be the decoration on a merged
cleaved circle C. Let e,, e,, and e,, be the bridge elements representing the changes of the
cleaved links: +14+9 — +., —14+2 — — and +;—9 —> —. respectively. Then

(psr, @ 1) (I ® Err ) De(+142) + (psr, @ 1a)(I® Do) Er o(4+1+2)

= (usr, @ L)L ® Er)(ey ® +c) + (usr, @ 1a)(I® De)[((Ec, + welec,) @ —1 +2)
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= 0.

since the first, second and third terms equal 0 by Relations 1 and 2 in the Group III.

Finally, we prove that Equation (8.6) is true. Again, since the proof for divisions is similar,

we only present the proof for the merging case. We have the following subcases:

1. All of circles are free: The proof of Equation (8.6) is then similar to case (2) below

and already described in |20, Proposition 7.1]|.

2. There is at least one free circle F' and one cleaved circle C'. Since what we are about
to prove includes the case when the decoration on C'is —, we can assume C' does not
contain the marked point. Let £, and £ be the decorations on the cleaved and free

circles respectively. We rewrite the map on the RHS of Equation (8.6) as

tety — w- (€8 ® —cty) + Togrse) @ +e—r)]

ety = W do(rse) @ e

+c_f — we?®_c_f

if r(c) =1 or +. > —. if r(c) = 0.
If r(c) = 0, the first term of the LHS of Equation (8.6) equals 0 because D, is

supported on states (', ") with 7/(¢) = 1. The second term of the LHS maps +. to
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(e + &) ® —, = 0. Therefore, Equation (8.6) is also true in this case.
If r(c) = 1, the second term of the LHS of Equation (8.6) is 0 and the first term can

be described as

toty — (W Topged ® —cty) + (W oo Togrs) @ +e—y)
_c+f — w- ]8(7“,8())[8(7",86') & e f
+c_f — w- G?IG(T,Sc) X —¢ —f-

By comparing the coefficients on each generator, the images of the LHS and the RHS

agree. As a result, Equation (8.6) is true in this case.

3. All of the circles are cleaved circles: The proof will be similar to the above cases when
we can prove that two sides of Equation (8.6) agree on every generator { = (r,s) of
[[?) by using Relation ?(%0701)?(71,0/750) — ¢¢. Figure 8.1 illustrates the proof for
this case. In this figure, C is the cleaved circle of the O-resolution while C; and C cor-
respond to the top and the bottom cleaved circles of the 1-resolution. In addition, z; =
(Brra(tarton) —onten) = &6 +(w+b)ed, and 2z = (3rra(+er+ar), +—0n) = b+

— —
6T,'(+C'1 +C2)7 —Ch +C’2> - %‘i_be—a and ZLJZ - <5T,0

(c+a)ec, while 2} = (
¢, + (w4 a + oec, (x, o', x5, 2, x4, and 2, can be computed similarly from
the weights). Also, in the figure, e.,, e,, and e,, are the bridge elements repre-
senting the changes of the cleaved links: +¢,+¢, — +¢, —c,+c, — —c¢ and
+c,—c, — —c respectively (eﬁ, e\ and e, can be defined similarly). Therefore,

(De(+c,+6,), +c) = w - e, and so on. In Equation (8.6):

LHS(+C1 +C’2) - (UJ ’ e’YleyI & —C1 +Cg) + (U} ’ 67167; ® +C1_02)
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G

~
=
In case of: \% In case of: \/\u

1-resolution

Figure 8.1: In this figure, the right and left columns contain the generators of the complexes
associated to the two tangles respectively. The dashed red and thick blue arrows illustrate
the definitions of the type D homomorphism and the type D structures respectively. The
recorded algebra elements above the arrows correspond to the change in the cleaved links
(see e, for an example) and will be explained in more details as in case (3) below. Note that
the diagram does not cover all the terms of the type D structures or the homomorphism.
It only illustrates the last case of Proposition 33. However, this picture can be modified to
give the pictures for the other cases by changing e,, and efﬁ to suitable algebra elements.
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and:

RHS(+¢,+c,) = (21 + 27) ® =0y +,) + (22 + 25) @ —cy+c,)-

Using Relation (3) in the Group II, we see that LHS(+¢,+¢,) = RHS(+¢,+¢,). Sim-
ilarly, we can prove that Equation (8.6) is true when applied for —¢,+¢, or +¢,—c,-

Therefore, ¥ is a type D homomorphism. <

— . —
Proposition 34. ([[?), dre) s isomorphic to ([T"), 017 4) as type D structures.

Proof. Let @ : [[7’) — Bl, ®7, [[?)} where ®(r,5) = Iyps) @ (r,5) + w.Dc(r, s) where
D, is defined identically as D, but from 1_% to 7 By Proposition 33, ® is a D structure
homomorphism. We will prove: ¢ o ¥ = Iﬁz>> and Voo = I[[F)) where o stands for the
composition of two type D structure homomorphisms (described in Chapter 9). After that,

-— - —
) 6T,O 5 6T’,o

we can conclude (] 7) ) is isomorphic to ([T") ). Indeed,

PoW
= (ugr, @ I;)(I® ®)¥
= (usr, @ L) (L@ Ip)lp + w. [(usr, © 1a)(I @ Do)y + (psr, @ 1a)(1® I )D,]
+(usr, ©12) (1 ® D).
We note that the last term is O since D. is supported on states (r,s) where r(c) = 1

while the image of D, contains only the states (r,s;) where r1(c) = 0. The sum of the
two middle terms is also 0 since the second term is equal to the third term. Moreover,
(ugr, @ L)1 @ Ip)ly = I[ﬁz». Combining all these facts, we obtain: ® o U = I[ﬁz». Simi-

larly, Vo & = I[[?)). &
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CHAPTER 9

GRADED DIFFERENTIAL ALGEBRA AND STABLE HOMOTOPY

9.1 Preliminary

Different projections of the right tangle 7 can have a different number of arcs and thus, the
corresponding type D structures will be vector spaces over different base fields. To relate
these structures, we will need an appropriate algebraic tool: the stable homotopy, whose
construction is based on the idea in [19, Section 4]. Let F be a field and W be a vector
space over F. Let Fy, be the field of rational function of Py where Py is the symmetric
algebra of W. Recall: let W, W’ be two vector spaces over F and let M, M’ be two vector
spaces over Fy,, Fy respectively. A pair (M, W) is stably isomorphic to (M’, W') if there
is a triple (W” i,4") where W” is a vector space over F, and W LW and WL W are
injective linear maps, such that M ®g,, Fy» = M’ ®F,,, Fw~ as vector spaces over Fyy». This
relation is proved to be an equivalence relation in [19, Lemma 4.3]. We always assume that
F is Zo and W is a vector space over Zo, unless otherwise stated. In this section, we give
a modification of this definition which will allow us to relate two type D (or A) structures
over two different fields. Furthermore, the complexes obtained by gluing stable homotopy
equivalences of type A structures to stable homotopy equivalences of type D structures will

be stably homotopic in the sense of [19].

9.2 Az category and stable A, homotopy equivalence

We will describe a way to construct A, modules over the ground field Fy, from A, over

Zs by first upgrading our unital DGA (BT, dr,) (over Zs) to one over Fyy.
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We will let (A,7), py and ps stand for (BL,,Z,), dr, and the product on BT, respectively.
Definition 35. For each vector space W over Zs, let Ay = A ®y, Fw, equipped with the
following Fy —linear maps

pwa s Aw — Ay [-1]
Uw,2 : AW ®FW AW — AW

where pw1 = Ly, and pwo = pe®ly,, , under the canonical isomorphism: Aw Qp,, Aw =

A®? @y Fy. We also let Tyy be T @z, Fy

Using the fact that tensor product is a functor, it is straightforward to verify the following
proposition:

Proposition 36. If (A, p1, u2) is unital DGA over Zsy then (Aw, pwa, twa) is unital DGA

over Fy.

The proof of this proposition is left to the reader. We recall the definition of an A, module
which can be found in [11, Chapter 2.

Definition 37. (M,{m;}ien) is a right A module over (Aw,Zw) if M is a graded Ty, -
module and for each i € N, m; : M ®1,, A%Fl) — M[i — 2| is an Ly -linear map, which

satisfies the following compatibility condition:

0= Z m;(m; @ I#071) + Z mi(I%F @ gy ; @ T90F=1)
itj=n+1 itj=n+1,j<3,k>0

(M,{m;}) is said to be strictly unital if for any & € M, my(§ ® 1a,,) = &, but for n > 2,
mp(§®a1 @ ... @ a,_1) =0 if any a; = 1a,,. (M,{m;}) is said to be bounded if m; =0 for

all sufficient large 1.

Definition 38. Let (M,{m;}) and (M’ ,{m.}) be two A modules over (Aw,Zw). An Ax

homomorphism VU is a collection of maps:

Wi s M ®z,, ASCY — M'[i — 1]
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indezed by 1 € N, satisfying the compatibility conditions:

0= Z m)(1h; @I Z i (m; IR0 4 Z i (T%F @ puyy; @TSEH-1)Y

i+j=n+1 i+j=n-+1 i+j=n+1,k>0,j<3

Additionally, a homotopy H between two A, morphisms ¥ and ® is a set of maps {h;}

with h; : M ®z,, Aﬁf(i_l) — M'[i] such that:

Gnkdn = 3 mi@I) 4 S bl N R (I g @I ),
i+j=n+1 i+j=n+1 i+j=n+1,k>0,j<3

(9.1)

For ease of notation, we sometimes let M stand for (M, {m;}) when it is clear from the

context.

Proposition 39. Let Ay be a collection of Asx modules over (Aw,Zw). Hom(M,M')
is a collection of As, homomorphisms (¥, {1;}) and the composition of ® o U is the set of
maps:

(@oW),= )  ¢ilyy@I°Y)

i+j=n+1

for each n € N. Then Awz forms a category.

Definition 40. Let ¢ : W — W’ be a linear injection. Let (M,{m;}ien) be an object of
Awz and (V,{Y}ien) € Hom((M,{m;}),(M',{m!})) be a homomorphism of Awz. We
define:

1.
f¢(M> - M®‘P ]FW"

2. For each i € N, F(m;) : Fo(M) ®1,, A(§V>(,i_1) — Fo(M)[i — 2] is defined by:
]:w(mi)((a: RT)R (a1 ®r1) @ ... ® (a;—1 ® Ti_l)) =mi(T®a; ® ... QA1) @TT1...T51

where x € M, a; € Aw and r, rj € Fy: for j=1,...,1—1.
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3. Similarly, for each i € N, F (1) : Fo(M) ®1,, A%(/i*l) — Fo(M")[i — 1] is defined

in the same manner as F,(m;).

Combining the facts that tensor product is a functor and there is the following canonical

isomorphism:

(M @, Fw) @z, (Aw @, Fyr)*0™) = (M ©g,, AF ™) @, Fyr
for each ¢ € N, it is straightforward to prove the two following propositions:

Proposition 41. F (M, {m;}) = (F,(M),{Fy(m;)}) is well-defined and it is an object of
Aw 1. Likewise, F,(V) is well-defined and belongs to Hom(F,(M,{m;}), F,(N,{n:})).

Proposition 42. For each injection p : W — W', there is a functor F, : Awz — Aw 1

defined by
Fo(M,{m;}) = (Fp(M), {F,(mi)})

Fo(W, {thi}) = (Fp(W), {Fp(1i)}).

Furthermore, if U and ® are A homotopic in Awz then F, (V) is Asx homotopic to F,(®P)

mn AW/J.

We now have enough tools to relate two A, structures over different fields by defining the

stable homotopy equivalence of A, modules:

Definition 43. Let W and W’ be two vector spaces over Zs. Let (M,{m;}), (M',{m.})
be objects of Awr and Aw 1 respectively. Then (M, {m;}) is stably homotopy equivalent
to (M',{m}}) if there is a triple (o, ,W") where W" is a vector space over Zy, and
o : W = W"and ¢ : W' — W" are linear injections, such that (F,(M),{F,(m;)}) is

homotopy equivalent to (Fy(M'), {F,(m})}) in the category Awn 1.

Proposition 44. Stable homotopy equivalence of As, modules is an equivalence relation.
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The proof of this proposition follows directly from [19, Lemma 4.3|, the fact that homotopy

equivalence of A, modules is an equivalence relation, and the following lemma:

Lemma 45. Let W be a vector space over Zy and @ : W' — W be a linear wngection. If

(M, {m;}) is stably homotopy equivalent to (M',{m.}) via (p,¢',W"), then (M,{m;}) is

stably homotopy equivalent to (M',{m]}) via (pop,po ¢, W)

Proof. Since (F,(M), {F,(m;)}) is homotopy equivalent to (F. (M), {Fu(m})}), (Fa(Fu(M),
{F(F,(m;))}) is homotopy equivalent to (Fz(Fp(M')), { Fz(Fy(m}))}) by Proposition 42.

Thus, we will finish the proof of this lemma if we can prove
(Foop(M), { Fgop(mi)}) Zay, , (Fg o Fo(M),{F5(Fp(mi))})

and

(Fop (M"), { Fgor (mi)}) Zag, , (Fi 0 For (M), {F5(Fr (i) }).

First of all, we have:
.F¢Q¢(M) =M Rzop FW = (M Ry IFW//) Qg F’W = ./rg o ./TSD(M)

Secondly, under this identification of the underlying modules, we need to prove Fazo,(m;) =

Fz o F,y(m;). Using Definition 40, we have:
Faop(mi)(z@7) @ (a1 @ 71) @ ... ® (021 @7i21)) = mi(2 @ a1 @ ... ® A1) Qo 71751

On the other hand,

Fo o Fo(mi) (2 ®,1) @5 7) ® ((a1 ®p 1) @3 71) @ ... © ((ai1 @y 1) ®p7i-1))

= Fo(mi) (2 ®, 1) ® (a1 @y 1) @ ... @ (411 ® 1)) ®p 171751

o4



= (ml(x ® aq ® ® CLi_l) ®¢ ].) ®¢ rry..ri—1.
Therefore, Fzop(m;) = Fz o Fp(my;). &

9.3 Dy Category and Stable D homotopy equivalence

We first review the definition of the type D structure and the Dy, category as in [11, Chapter
2.3].

Definition 46. [11, Chapter 2.3] Let N be a graded Ty -module. A (left) D structure on
N is a linear map:

satisfying:

(w2 @ In)(Lay, ®6)6 + (pw, ® Iy )d = 0.

&% 1 N — (ASF ®1,, N)[—Fk] is defined by induction §° = Iy,8" = & and the relation
6" = (I°=1) @ §)§"L. We call the type D structure (N,d) bounded if for all x € N, there
is an integer n so that for all i >n, 6 = 0.

A homomorphism of type D structures (N,0) — (N',¢') is a map ¢ : N — Aw @z, N’

such that:

(w2 @ In)Iay, ®0)Y + (pwe @ In)(Lay, @ V) + (pw, @ Iy) = 0.

H: N — (Aw ®1, N')[1] is a homotopy of two type D structure homomorphisms v and
¢ if:

Y+ ¢ = (pwe®@In)(Ia, ®0)VH + (pwe @ In)Ia, @ H)S + (pwy @ Iy)H.

Proposition 47. [11, Chapter 2.3] Let Dy.1 be the collection of type D structures (N, 0)
over (Aw,Zw). Let Hom((N,6),(N',d")) be the set of type D homomorphisms and the
composition p o of v : N — Ay @ N and ¢ : N' — Ay ®1,, N” is defined to be
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(pwa @ Inv)(La,, ® @)¢. Additionally, the identity homomorphism at (N,0) is Iy : N —»

Aw ®1,, N given by x — 14, ® x. Then Dy 1 forms a category.

Using the same technique as in Section 9.2, for each ¢ : W — W’ a linear injection, we will

construct a functor from Dy 7 to Dy 7. Before doing that, we need the following definition:

Definition 48. Let ¢ : W — W’ be a linear injection. Let (N,0), (N',§') be two objects of
Dwz and ¢ € Mor((N,0),(N',d")). We define:

1.
g¢(N) = N®SD ]FW’

2. Furthermore,

Go(0) : N @, Fyyr — Ay @1, (N @, Fyyr)[—1]

is defined to be 6 ® Iy, under the canonical isomorphism Aw: ®z,,, (N @, Fyr) =

g@(zb) N ®<,0 FW/ — AW/ ®IW’ (N/ ®<p FW’)
is defined to be 1 ® Ir , under the canonical isomorphism Ay ®z,, (N' ®, Fyr) =
(Aw @1, N') @, Fyr.

Proposition 49. Using the same notation as in the above definition, there exists a functor

G, : Dwz — Dw 1 defined by:

gcp(N7 5) = (gw(N)> g<p(5))

and G,(v) is defined as above. Furthermore, let ¢ and ¢ belong to Hom((N, ), (N',0")) in
Dz and if H is a homotopy from 1 to ¢, then G,(H) is a homotopy from G, (1) to G,(¢)
in Dy 7 where:

g¢(H) - N ®30 IFW/ — AW’ ®]FW, (N/ ®g0 FW’)[H
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is defined to be H®lp, , under the isomorphism Ay @z, (N' @, Fy:) = (Aw @z, N') @, Fy.

Therefore, G, induces a functor from the homotopy category of Dy 1 to the homotopy cate-

gory of DW/,I-

We now can give a definition of stable D homotopy.

Definition 50. Let W and W' be vector spaces over Zs. Let (N,6), (N',8") be objects of
Dwz and Dy 1, respectively. Then (N, 0) is stably homotopy equivalent to (N, d") if there
is a triple (v, @', W") where W" is a vector space over Zo, o : W — W" and ¢ : W' — W"
are linear injections, such that G,(N,0) is homotopy equivalent to G, (N',¢') in the category

Dy 1
Proposition 51. Stable homotopy of type D structures is an equivalence relation.

Since the proofs of Propositions 49 and 51 are similar to the proofs of Propositions 42 and
44 respectively, we leave them to the readers. We have the following remark about the

property of the composition of two functors, which is useful for the next section.

Remark 52. Let ¢ : W — Wy and py : Wi — Wy be injective linear maps. Let (N,6) be
an object of Aw. Then Guyop, (N, 6) =p Gy, (G, ) (N, ).

9.4 Pairing an A,, module and a type D structure over different DGAs

In [11, Chapter 2.4], there is the result that we can pair an object (M, {m;}) of Az and
an object (N,d) of Dyz to form a chain complex (M X N,9%) over Fy. Additionally, if
(M,{m;}) ~a (M',{m}}) in Ay 1 category and (N,d) ~p (N’,d') in Dy,7 category, then
(M X N,9%) is chain homotopic to (M’ X N’, 9%).

For our purpose, since we need to pair a type A and a type D structures over distinct
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differential graded algebras, we will modify the way to pair them to get a chain complex.
Furthermore, we will prove that under the change of either type A or type D by a stable
homotopy equivalence, the glued chain complexes are stably chain homotopic.

Let W and W’ be two vector spaces over Zy. Let (M, {m;}) and (N, J) be objects of Ay 7
and Dy 1 respectively. Suppose moreover that either (M, {m;}) is a bounded A, module
or (N,0) is a bounded type D structure. Let W := W & W’ and let ¢ : W — W,

¢ W' — Wi be two canonical linear injections.

Definition 53. Define M X, N to be the graded vector space Fp(M) @1y, G (N) over Fyy,
and 0% : M ®y N — (M X, N)[—1] to be the map :

(e}

=3 (Fulmunn) 8 T5E) o (1 @ )
k=0
where Ay, : Gy (N) — ARE @1y, G (N)[—k] 15 defined by induction Ao = Ig vy, A1 =
G (0) and the relation: A, = (I°"Y @ G(5))A,_1.

Note. (M K, N, 9%) is defined exactly the same as the definition of (F,(M)X G, (N), %)

in [11, Definition 2.26] and thus, it is a chain complex.

Proposition 54. Let W, W' and W be three vector spaces over Zs. Let (N,0) be an
object of Dy ;. Let (M,{m;}), (M',{m!}) be objects of Awr and Aw 1 respectively, such
that (M,{m;}) is stably homotopy equivalent to (M',{m}}) via the triple (v, ', W"). Then
(M R, N,0%) is stably chain homotopic to (M’ X, N,0%).

Before proving this proposition, we state the following lemma which can be proved in a

similar manner as Lemma 45.

Lemma 55. Let (M,{m;}) and (N,¢) be objects of the categories Awz and Dy respec-
tively. Let o : W — W' be a linear injection. Then (M R N) @, Fy,0® @ 1Ir,,) is chain
isomorphic to (F,(M)X G,(N),d%).
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Proof of Proposition 54 .

Define V := WaW, V' := WaoW and V/ .= W'&W. Let G: V — V" and &' : V! —s V"
denote the maps ¢ ® I and ¢’ @ I, Let p : W — V,p W — Ve : W — V,
7 W' — V' and 7" : W” — V" be the natural injections. We immediately have the

following relations:
1. pop=y¢ op.
2. pomr=n"0¢.
3. o’ =a"o0.

We will prove that (M X, N,0%) is stably chain homotopic to (M’'X, N,9%) via the triple
(@, @, V"). Indeed, using Lemma 55 and the fact that the underlying complex of (M X,
N,0%) is Fr(M) ®1, G,(N), we have:

(M B N) @z Fyn, 0) @ Ir,,,) = (Fa(Fr(M)) B G5(Gy(N)), 0%).
Additionally, by the proof of Lemma 45, we have:
JT‘;;(./T",.-(M)) ~aA J_‘Z;Oﬂ-(M) = Fﬂ//ow(M) >~a ./T"ﬂ-// (J_‘;(,(M))

Note that the second identity comes from the relation ¢ om = 7" o ¢. Similarly, Gz(G,(N))
is D-homotopy equivalent to Gzo,(/N). Therefore, following [11, Lemma 2.32|, (M X, N) ®3
Fyn, 02 ®@1p,,) is chain homotopic to (Fr(F,(M)) ¥ Gpop(N),0). Likewise,

(M'®e N) @z Fyn, 07 @ 1p,,,) o2 (Fer(Fp (M) ® Grop (N), 0%).

Since (M, {m;}) is stable A-homotopy equivalent to (M’,{m}) via the triple (¢, ¢, W"),
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we have F,(M) ~4 Fy(M’) in the category Ay~ 7. By Proposition 42,
For Fo(M)) 4 Furl For(M)).
Furthermore, since p o p = ¢’ o p/, we have Gzop(N) = Gzrop (V). Therefore,
(Frr (Fo(M)) B Gop(N), 0%) = (Frr (For (M) B Grop (N), 07).
Thus,

((M &. N) ®¢ FV//, 8? ® ]IFV”) ~ ((M/ . N) ®(5/ FVN,8|.XI ®]IFV”)’

As aresult, (MX,N, ) is stably chain homotopic to (M'X, N, 9%) via the triple (@, &', V").
<&

The same method can be applied to prove the following theorem:

Proposition 56. Let W, W’ and W be vector spaces over Zy. Let (M,{m;}) be an object
of Ay 7. Let (N,6) and (N',0") be objects of Dw,z and Dy 1 respectively such that (N, 9)
is stably homotopy equivalent to (N',8") via the triple (o, ,W"). Then (M K, N,9%) is

stably chain homotopic to (M X, N, 9%).
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CHAPTER 10

INVARIANCE UNDER REIDEMEISTER MOVES

In this chapter, we will prove that the stable homotopy type of (] ?», (?z) is invariant under
the Reidemeister moves. We will first use the “weight moves" trick, described in Chapter 8,
to move the weights to the bottoms of the local diagrams, see Figures 10.1 and 10.2. After
that, the result follows from a modification of the proof of the invariance in the untwisted
case. As we notice before, the type D structures before and after a Reidemeister move will
be defined over different fields. Therefore, to relate these structures, we will specify how
the formal variables for the two diagrams need to be related to show invariance.

Attention: In the proof of invariance under Reidemeister moves, we sometimes use the

index T"in BI'r,, to emphasize the dependence of the ground field F= on the diagram ?

10.1 Invariance under the first Reidemeister move

Figure 3 shows the complex for a diagram prior to and after an Reidemeister I move applied
to a right-handed crossing. Let ? be the tangle diagram before the Reidemeister I move,
and let ? be the diagram afterwards.

As usual, we can decompose [[fz) = Vh & V] corresponding to states (r,s) where r(c) = 0
or r(c) = 1. Furthermore, since each state generating V) always has a free circle C' as in the
local diagram, we can continue decomposing Vo = (V' ® +.) @ (V' ® —.) where £, are the
decorations on C.

Let (r,s) be a state in V' ® +.. As we can see, the only state (r/,s"), which is a generator
of V1 and is in the image of (T/,.(r, s), is the one obtained by applying daps. In this case,

the coefficient of (r',s') in BI', is o5 = Isp,s). Using this fact, we can use Lemma 31
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Figure 10.1: In the top row, we use the weight shift isomorphisms to move all the weights
to the bottom of the diagram. Surgering the crossing c in both ways gives a finer view
into the complex. Regardless of whether the local arc is on a free circle or a cleaved circle,
the recorded algebra element of the thickened arrow is always an invertible element of BT,
(however, the recorded algebra element of the dashed arrow depends upon the type of the
local arc). When the complex is reduced along the thickened arrow, we obtain the complex
for the diagram before the Reidemeister I move with the weight x4 + x,, + x5 on the local

arc.

C
TAt+T,t+TR

TA+T,+ap

P volrHiry

{rlr(c)=1}

V'® -+,

Vi
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to cancel out V' ® +. and V;. What we have left is V5, = V/ ® —, with the new type D
structure 31) : Vo — BT, ® V5 where gf is the sum of (7 = 67,.>|V2 and the perturbation
term.

Taking a deeper look into the cancellation process, we see that the perturbation term arises
from the following diagram: & — & — & — & where & € Vs, & is a generator of V)
5 a(€2), 1) = To(eyy = Iojes), and

((T/:(&),&;) # 0. We note that £ has to be a generator of (V' ® +.) @ V;. Indeed, the

which is in the image of (?/:(5), & € V' ® +. such that (

only possibility for &3 € V! ®@ —, = V5 is that &3 is obtained from & by applying the vertical
map @ to change the decoration on C'. But since we already moved the weight out of C'
as described at the beginning of this chapter, wé = 0. Therefore, & € (V' ® 4.) & V4.
As a result, at the end of the cancellation process, &3 is canceled out. Consequently, the
1),

Although there is one-to-one corresponding between the generators of [[?)} and of V5, we

%
perturbation term will be 0 and (4, (?) ~ ([T")

are still working over different fields Fz and F—. Additionally, the local arc in 7 is labeled
by y; while the one of V; is labeled by x4 + x5 + x,. To relate them, let ¢ : BI'y,, — Bl'rv,
be the map induced by the inclusion ¢ : Fz — ny defined by: y; — 24 + xp + x, and

y; — x; for @ # j. Then, we define:

5ron: [ TY2,Fo — Bl @1, [[T)®, F=]

T/

by specifying <m((r,s) ® 1) , ()8 ® 1> = @<<?.>(7‘, s), (1, ¢) > By Proposition 49,
5T—w> is a type D structure on [[?) ®, Fo over (BLgv p, I ).

If we further identify the generators (r,s) of Vo with (r,s) ® 1 of [?) ®, Fz, we have
<(7(r, s), (r',s)) = <<Tw.>((r, s)®1), (r,s') ®1). Therefore,

(LT) @y Far,b70) = (Va, 8) 2 ([T'), 3770)
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Figure 10.2: The weights moved in the second Reidemeister move

— - —
,0r.4) is stably homotopy equivalent to ([ 1"), 677 )-

over (BL'r , Iy ,,). Consequently, ([[?)
&
The invariance under a left-handed Reidemeister I move can be obtained by combining the

invariance of the type D structure under the right-handed Reidemeister I move and under

the Reidemeister II move.

10.2 Invariance under the second Reidemeister move

As before ? will be the tangle before the move and 7_% will be the tangle after using a
Reidemeister II move. Once again we shift all the weights to the bottom of the diagram
(see above figure). Since the homotopy class of the type D structure associated to the tangle
is invariant under the weight moves by Proposition 34, we still denote F the weighted tangle
after shifting the weights.

Let c¢1, co be the two crossings in the local diagrams. For ¢« = 0,1, j = 0,1, we let V};
be the set of states where ¢ is resolved by ¢ and ¢; is resolved by 5. We can decompose
[[7_%» = Voo @ Vo1 ® Vi ® Vi1. We further decompose Vi = (V ® +.) @ (V ® —.) where
+. are the decorations on the free circle C. Basically, the same sort of argument as in the
proof of the Reidemeister I invariance can be used to explain why we can cancel out V ® 4+,
and Vij; without creating any new perturbation. The reason again comes from the fact that

we = 0, and thus, we do not have any maps from V ® +. to V ® —.. This is illustrated in
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xy+x4)---(T6 + T

Figure 10.3: This figure illustrates the proof of invariance under the second Reidemeister
move. As we can see, regardless of whether the local arcs lie on free circles or cleaved circles,
the recorded algebra elements of the thicker arrows are always idempotents. Additionally,
if we cancel the bottom thicker arrow first, and then the top thicker one, we introduce
no new perturbation terms since the weight on C'is 0 . These cancellations produce the
deformation retraction of the type D structure.
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Figure 10.3.

The next step is to cancel out Vyy and V ® —. by applying an isomorphism [ ® dapg :
Voo — V ® —.. Again, no perturbation term appears since there is no map from V; to
Voo @ (V ® —.). At the end, we will be left solely with V4; and a new type D structure
8 Voo = By, ® Vin where §' = 5T—/,.>|V01. Note that the generators of V{; corresponds
1-1 with the generators of [[7), but they are two possibly distinct type D structures over
the different ground fields. Let the weights on two local arcs of ? be y;, and yg. To relate
BU'r,, and BI'pv,, we construct the ¢ : BI'p,, — BI'yv,, which is induced by the inclusion
p:F= —>]F'7:;, defined by: y;, — 1 + x4 + 5, Yy — T2 + x3 + 16 and y; — x; for i £ L

- -—
or R. Using @, we can upgrade the type D structure ([[?}), 0T

) over BI'r,, to a type D
? T . . ,

structure ([ 7' ) ®, F=, 07, 4) over BI'rr , and the latter is homotopy equivalent to (Vor,d").

These can be proven exactly as in the proof of the invariance under the Reidemeister I.

— —
) (5T,0 ) 5T’,o

—>
Consequently, ([ ?)} ) is stably homotopy equivalent to ([ 7") ). ©

10.3 Invariance under the third Reidemeister move

Since the proof of invariance under the third Reidemeister move is similar to the proof of
invariance under the first and the second Reidemeister moves, we only mention the strategy
of the proof and the figures to illustrate it. However, we will construct a homomorphism to
relate BI'r,, and BI'rv,, since it is somewhat different from the proof of invariance under the
Reidemeister I and II moves. The strategy is to follow these steps: 1) shift the weights to
the bottom as in Figures 10.4 and 10.5. 2) using the cancellation method exactly as in the
Reidemeister II move for the top faces of the top diagrams in Figures 10.4 and 10.5, we will
get the lower diagrams with the two new perturbation maps. The important point is that
there is one-to-one corresponding between the generators of the lower diagram in Figure
10.4 and the generators of the lower diagram in Figure 10.5. Also, the maps from the tops
to the bottoms of the lower diagrams in these two figures will be the same (see [17, Lemma

46] for more details).
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Figure 10.4: The local picture for a diagram before the Reidemeister III move. We de-
compose the module along the eight possible ways of resolving the local crossings. The
four resolutions with the crossing ¢ resolved by a O-resolution replicate the diagrams in the
proof of Reidemeister II invariance. Using the cancellation process in the top of the higher
diagram (as in the case of the Reidemeister II move) gives the lower diagram. A new per-
turbation map may occur from the thicker red arrow in the bottom figure; however, under
the identification of the generators of the lower diagrams in Figures 10.4 and 10.5, it will
be the same as the map of the lower diagram of Figure 10.4 which is obtained by surgering
a bridge at the crossing d .
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g

Figure 10.5: The local picture for a diagram after the Reidemeister III move. Once again
there is a new perturbation map, shown by the thicker red arrow in the bottom figure.
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We assume that the weights for the arcs not shown in the figures are z7,...., z;. The type
D structures of the lower diagrams in Figures 10.4 and 10.5 will be denoted by (R, d7)
and (Ry,dy) respectively. Let (S,dg) be a type D structure with the identical maps as in
the lower diagrams but with the black circle representing u,, the white circle representing
up and the gray circle representing usz. We note that (5,dg) is a type D structure over
Bl's, = BT, ®z, Fs where Fg is the field of fractions of Zs[uy, us, us, 27, ..., /. We define
¢y @ Bl'g, — BI'r, which is induced by the inclusion ¢, : Fs — Fr: uy — y1 + v,
Uy — Yo + y5 and uz — y3 + yg. As in the proof of the Reidemeister I invariance, this map
will give us a way to relate (5, dg) and (Ry,01) and as a result, (S,0g) is stably homotopy
equivalent to (Ry,d7).

Similarly, @5 : Bl'g,, — BI'1v,, which is induced by the inclusion ¢y : Fg — Fp: uy —
T3+Ys, Uz — y1+ys and ug — yo+1ys, will result in (S, dg) being stably homotopy equivalent
to (Rs,d2). Then by Proposition 51 , (Ry,d;) is stably homotopy equivalent to (Ra,d2). As
a result, ([[?),c?.) ,(ﬁ

%
) is stably homotopy equivalent to ([T") ). ©
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CHAPTER 11

A TYPE A STRUCTURE IN TOTALLY TWISTED KHOVANOV
HOMOLOGY

In [18], L. Roberts describes a type A structure on the underlying module (?]] (see the note
at the end of Chapter 4) over BI',,. Tt is characterized by two maps: 1) the differential m,
which increases the bigrading by (1,0) and thus is a degree 1 map relative to the (—grading
and 2) the action my which preserves bigrading and thus is (—grading preserving. For the
twisted bordered homology, we will describe another type A structure on ((?}] over BI',, by

the following maps:

mie AT ] — (T [~1).
mae : (T | @z, BT — (T].

Let & = (7, s) be a generator of ((?]] and e be a generator of BI,,.

For my 4: we denote my o(§) := daps(§) +0v(§) = mi(€) + 0y (). Since the vertical map 0y
decreases the bigrading by (0,2), m; . is (—grading preserving into ((?]][—1]

For mge: we first define the action of a generator of BI',, on ((?}]

o If € # &¢, then myl(€ ® €) 1= my(€ ® €) where e is either an idempotent, or a bridge

element, or a right decoration element and my is defined in [18, Section 4].

o Ife= ?c, then my (€ ® &) =me(§® %) + %mz(f & €_c>) =my(é ® ?C) + @E(T, sc).
The fact that my preserves the (—grading immediately results in the fact that mg,. also
preserves the (—grading.

To define the action of a general element of BI',, on ((?}], for p1,ps € BT',,, we impose the
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relation:

Mye(§ @ p1p2) = Mae(Maoe(§ @ p1) @ p2). (11.1)
For this definition to be well defined, we need to prove the following proposition:

Proposition 57. If two products of the generators p; and py define equal elements in BT,

then mao(§ @ p1) = Mae(€ @ pa).

Proof. It suffices to prove mqo({ ® p) = 0 if p is a relation defining BT',,. First of all, we

recall the two following facts:
1. me(§ ®p) = 0 as in [18, Proposition 20].
2. Mae(E @ e) =my(€ @ e) for every generator of BI,, unless e = &c.

Combining these two facts, we have that if p does not involve ég, then Mae(€ ® p) =
ma(§®@p) = 0. If p involves ?g, let p; be an element of BI',, obtained from p by substituting
ec for each term &¢ in p. In this situation, we have the following cases:

Case I. If p; is a relation defining BI',,, then we have two possibilities:

o If p=Ecép +épec: Since ma.e(€® 60) = ma(E®EC) + toema(E @ d) and ma.e(§® &p) =
ma(€ ® %) + %mz(é ® &3), we have:

Ma.e(§ @ p)
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e [ma(€ ® Eped) +ma(€ ® 88ép)] + Wotop [ma(€ ® eden) + ma(€ ® eped)]

= 0 since my(§ ® q) = 0 for every ¢ which is a relation defining BT, and each
of the terms in brackets is a relation defining BT,,.
o If &5 is the only left decoration element involved in the relation p. We have: mq 4(®@p) =
ms(€ ® p) + %mg(f ® p1) = 0 because both p and p; are relations defining BT',,.
Case II. If p; is not a relation defining BI',,, we see that the only relations which involve
left decoration elements and satisfy that p; is not a relation defining BI',, come from either
merging two + cleaved circles or dividing a + cleaved circle by surgering along a bridge ~.
Since the proof of the case of division is similar, we just present the proof of the case of

merging. In this case, p = @m% + ecy My, + mw%. We need to prove:
Mae(€ ® Ecymy,) + Mo e(§ @ Egme,) +mae(€ @ m,eo) = 0. (11.2)

Rewriting the left side:

& Mo e(Mae(€ @ Ecy) ®@My) + Mo a(Mae(§ ® Ec,) ® M) + Mae(Mae(§ @m,) ® &) = 0.
& [ma(ma(€ ® &c)) @ myy,) + ma(ma(€ @ Ec;) @ my,) + ma(ma(é @ my) ® &c) |+
[ma (e, ma (€ ® &c]) @ my,) + ma(lgyma (€ ® €6) ® ma,) + Woma(ma(€ @ my) ® €8)] = 0.

The first bracket equals 0 since p = %mw + @mw + my% is a relation defining BI',,.

Therefore, it suffices to prove:

Mmooy ma(€ @ e0)) ® m., ) + ma(Te;ma(€ ® ea)) @ ma,) + Woma(ma(€ @ m,) @ &) = 0.

Since g = We, + We,, we can rewrite the left side:
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& e, [ma(€ @ ecima, ) +ma(€ @ myed)] + Wy [ma(§ ® echmy,) +ma(§ ® myed)] = 0.
The sums of the first and second brackets equal 0 since é¢. M, + 77176_0> and @mw + mve_c>
are the relations defining BI',,. Thus, Equation (11.2) is true and as a consequence, ms , is
well-defined. <&

Next, we will prove that (((?]],m17.,m27.) is an A, module over the differential graded

algebra BI',, with m,, o = 0 for n > 3.

Proposition 58. Let £ = (r,s) be a generator 0f(<?]] and p1,p2 € BI',,. The maps my o

and mq e satisfy the following relations:
1. mye(m1e(§)) = 0.
2. Ma,e(mi,e(§) @ p1) +M2e(§ ®dr, (p1)) + Mie(Mmae(§ ®p1)) = 0.

3. M2e(§ @ P1P2) = Mae(Mae(E R p1) @ pa).

Proof. The first identity comes from the fact that m;, is the differential on the complex
(?]] (see |20, Proposition 3.6]). The third identity comes from the fact that the construction
of my , is well defined, as shown above. Therefore, we only need to verify the second identity.
By using an inductive argument described at the beginning of [18, Proposition 21], it suffices

to prove the second identity when p; is a generator of BI',,. We have the following two cases:

Case I. If p; # c, using the fact that dr,(p1) = 0, m1e = my + 0y, and the relations

between msy . and mgy, we rewrite the second identity as

[ma(mq(§) @p1) +ma(E@dr, (p1))+mi(ma(E@p1))] + [m2(Ov() @p1) +0p(ma(E@p1))] = 0.
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Due to the fact that (({?]],ml, ms) is an A, module over the differential graded algebra

BT',,, the first bracket is 0. Therefore, we only need to prove that:

ma(Ov(§) @ p1) + y(ma(§ @ p1)) = 0. (11.3)

There are three possibilities for p;:

1. If py is an idempotent Iz ), then both terms will equal 9y (§) if (r,s) = I(1 ) and

they are both 0if (7, s) # I(1). As the result, Equation (11.3) is true in this case.

2. If py = &&, then my(3yp(€) @ p1) = dy(ma(€ @ p1)) = S p(r, sc.p) where the sum is
D

over all + free circles D of €.

3. If p; is a bridge element corresponding to surgering along a bridge 7y, then

ma(Oy(§) @ p1) = Ov(ma(§ @ p1)) = Z(Ta,p, Sa.D)

a,D

where 1) if p; is a left bridge element, the sum is over all active resolution bridges «
which map to 7 and all + free circles D of &, or 2) if p; is a right bridge element,
a = and the sum is over all + free circles D of . Therefore, Equation (11.3) is true

in this case.

Case IL If p; = éc, we need to prove the following:
My e(M1e(§) @ &) + Mae(§ ® dr, (éc)) + m1e(M2e(€® éc)) = 0.

& [ma(mi(€) ® &) + X oema(&, @ e0)] + [ma(v(€) ® &) + Woma(9v(€) ® &8)]+

ma(€ @ dr, (Ec)) + [ma(ma(€ @ €c)) + Ov(ma(§ @ €c))] + [ema(ma(é ® )+

74



oy (ma (€ ® 6—>C>>] = 0.
where &, is in the image of m,(&), C, corresponds to C' in (), and ~ is taken over all
active resolution bridges which contribute to m;. Rewriting the left hand side:

& [ma(mi (&) ® &) + ma(€ @ dr, (Ec)) + mai(ma(€ ® &))]+
e [ma(0v(€) ® 88) + v(ma(€ ® &)+

[ e ma(&y ® e) + ma(0v(€) ® éc) + dy(ma(€ ® &) + tuemi (ma( @ é2))] = 0.

Y
The first bracket is 0 since (((?ﬂ,ml,mg) is an A, module over the differential graded
algebra BT',,. The second bracket is also 0 by Equation (11.3). Therefore, we only need to

make sure the third sum is also O:
> licma(&, @ ed) + ma(0v(€) ® Ec) + dv(ma(§ @ &) + Womi(ma(§ @ e8)) = 0. (11.4)
v

Since we have the following identity:
ma(m (&) ® e6) = ma(my(§) ® dr,, (e6)) + ma(ma(§ ® el)) = ma(ma(€ @ &2)),
we can rewrite Equation (11.4) as following:

> ma((fie, + 00)&, ® &) + ma(0y(6) @ &) + dv(ma(§ ® &) = 0. (11.5)

Y

The second term contains pairs of (D, ) from changing the decoration on a + free circle D
first, then resolving an active resolution bridge v which changes the decoration on C' from
+ to —. On the other hand, the third term will be the sum of pairs (y;, D) coming from
surgering an active resolution bridge v; to change the decoration on C' first, then changing
a + free circle Dy of &, to —. Taking the sum of the second and the third terms, the pairs

(D,~) in the second term will be canceled out by the reverse pair (v, D) if (v, D) belongs
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to the third term and vice versa. However, there are two exceptional cases when reversing a
pair of the second (third) term does not belong to the third (second) term: 1) (D,~) where
D is a + free circle of £ and 7 has one foot on D and another on C or 2) (v, D.) where
7 is an active resolution bridge whose feet belongs C' and D, is new + free circle which is
created by surgering . On the other hand, the first term of Equation 11.5 contains the
generators whose coefficients ”ﬁu—c7 + foc = 0 if and only if the active bridge v has at least
one foot on C. By comparing the “weight" coefficients, those generators will be canceled

out by generators in the above two exceptional cases. As a result, Equation 11.5 is true. &
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CHAPTER 12

A SPANNING TREE MODEL FOR THE TYPE A STRUCTURE

In this chapter, we will define the type A structure (((ﬁ]], my .1, mer) described in Chapter
1 and prove that it is Ay, homotopy equivalent to (((?ﬂ, M0, M)

Let STn(?) be the collection of states of ?, consisting of those states that do not have any
free circles in their resolutions. Recall that <<C<’—T]] is a vector space over e generated by

s1,(T).

Next, we will describe two maps:

Let € = (r, s) be a generator of (<C<’_T]] and e be a generator of BI,,.

For myr: we denote myr(€) = Z <(r,s), (r',s’)>(r',s’) where <(r, s), (r’,s’)> is
(5" esTn (T)
defined the same as in Chapter 7.

For mqy 1: we first define the action of a generator of BI', on <(C<'_T]]
o If e # &G, then my (€ ® €) := Mg (€ ® €) = my(€ ® €) where e is either an idempotent,
or a bridge element, or a right decoration element.
o If e = &G, then my (€ ® &0) := Toa(r, s¢).
«

To define the action of a general element of BI',, on (CT], for py,ps € BT, we impose the

relation:

mar(§ @ pip2) = mar(Mar(§ @ p1) ® pa). (12.1)
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Instead of proving that the definition of myp is well-defined and (((E“]],mlj,mgy) is a
type A structure directly, we will show that after a simplification process applied to the
type A structure (((?]], M1e,Mas), the resulting type A structure is actually the same as
(((&”]], my 1, mer). In order to describe this simplification process, let us recall a standard

result in the study of A, module which can be found in [18, Section 5|:

Proposition 59. Let (M,{m;}) be a strictly unital, right A, module over an A, al-
gebra (A, {w;}), and let (M,m,) be a chain compler. Suppose there exist chain maps

v (M) — (M,my) and © @ (M,my) — (M,m,), and a map H : M — M]1]

satisfying
mou =1y (12.2)
tom—Iyy=mioH +Homy (12.3)
Hoit=0 (12.4)
moH =0 (12.5)
H? = 0. (12.6)

Then there are maps m; : M @ A®=Y M fori > 2 such that {m;}2, defines a strictly
unital right A module structure on M. This structure is homotopy equivalent to (M, {m;})

through strictly unital homomorphisms which extend ™ and ¢.

We note that {m;}°; and the homomorphisms can be computed explicitly in the proof of
this proposition. For our purpose, we only need to recall the formulas for {m;},. For

n>2,%,: M®A*"Y) s M[n — 2] is defined by:

%, = > mi, (H @ 20D (my, @ 120D (H @ T807%)) (m,, @ 1807i),
i;>2,i14...+ig=n—1+k
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Then, m, : M ® A=Y — M[n — 2] is defined by:
Ty =m0 Xy, 0 (1 @ I®M~D),

We next will recall the general strategy to define H, ¢, and 7. Suppose that we have a
chain complex (M, m) where the generators of M, are {x1,...,x,} and those of M, are
{y1,...,yi}. We also suppose that m;(z;) = > a;;y; where a;; = w is an unit. Canceling
the pair (z1,71), we obtain a new chain complex (M,7;) on where the other chain groups
and boundary maps are taken to be the same, but M is spanned by 25, ..., 2/, and M,
is spanned by ¥5,...,y. m™: M — M is a natural projection. The new boundary map
my : My — My is given by my(z}) = (7 o my)(2; — a;u™'z;1). Additionally, we let
/

) = x; — a;utwy, H(y)) = v 'z, and H(z) = 0 otherwise. With these formulas in

u(7]

hand, we can find the explicit formula for m,.

Proposition 60. (((ﬁjﬂ,mlj,mgj) is an As module over the differential graded algebra
BL,, with mp,r = 0 for n > 3. Furthermore, ((?]],ml,.,mz.), defined in Chapter 11, is

F
A homotopy equivalent to ((CT ], my 1, mar).

Proof. Starting with (((?]],mlv.,mg,), we will use Proposition 59 to cancel all of the
mutual pairs (see Proposition 32 for the definition of a mutual pair) to get an A, module
(((C<‘—T]], {m,}) homotopy equivalent to (((?]], M1e,Mas). After canceling all of the mutual
pairs, the resulting differential 77, is actually m; 1 (the proof can be found in [20, Proposition
5.1]). Therefore, we only need to prove my = mor and m,, = 0 for n > 3.

Suppose there are [ mutual pairs {(£,&5,)},17 in STATE(?). We will cancel them in turn
by using Proposition 59 and obtain the collection of (I+ 1) strictly unital right A, modules
{(M7, {mi})}, g7 where (MO, {m0}) = (T ], m1,0,ms) and (M', {ml}) = (TT], {m.}).
We analyze how new actions can be created in the simplification process by using the

formulas to compute H, 7, ¢, 3, and the new actions as in Proposition 59. With a slight
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abuse of notations, we use the same notations m, ¢, and X, at each step of the whole
simplification process. Let & € STATE(?) and let eq, ....,e,_1 be non-idempotent elements
of BI',,. We will observe that after canceling the mutual pair (fi,féi), there are exactly
three ways the new actions can show up:

e Case L. If (m{'(¢),&,) =a#0and m}, ' (('®e; ® ... ®e,_1) # 0, then
m(ERe®..Qen1)=m0X,0 L) ®er ® ... @ en_1).

We note that there is only one term (the one not involving H) in ¥, which is nonzero in
Ypo (1(f) ®e; ® ... ®e,_1). That is because of two following reasons: la) H(Q) = 0 if Q
is a linear combination supported on states not equal to &, and 1b) my (e ®...®

er-1),&6) = (m7 (€ ®er® ... @ep1),&L) =0 for any k € {2,...,n} (it is true because

9(€) = 0(¢") = (&) and ey, ..., ;-1 are non-idempotent elements). Therefore,
m(ERe®.Qe, 1) =Tom (Re1®...Qen1)+ (Wg,) Ha-miH E®e®...Qe, 1).

In this case, the last term of the right hand side is a new term in the action.
o Case IL If mi (@61 ®...® e, 1) = a- & + Q1 and my (&) = W, - €, + Q, by using

a similar argument as in above case, we obtain:
mi(E®er®..®ep1) =m105,0 (1) ®er® ... ® en1)

=a(m N (E®@e @ ... @ep))
=7(a- &, + Q1)
=a- () Q+ Q1

In this case, the first term of the right hand side is a new term in the action.

e Case IIL If m) ' ({®e1®...Q€u_1) = a-&6 +Q and m), 1 (£ ®e,®...Q€,-1) # 0, then
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m(ERer®...Qep 1) =T0X,0 L) ®er® ... ®epr)

:77'0[ (5@61@ - ep 1)+mn p+1(Ho

(M E8e1® .. 86p1)) @6y @ @en-1)]

=momi N (E®e ® ... ®en1)

+mo(H(a & +Q)®ep® ... @ ep_y)

=romi N (E®e ®... ®en1)
+a- (fog) Tmomi” (' ®e,®.. e, ).
In this case, the second term of the right hand side is a new term in the action.
Using the above observation about how new actions can be created, we analyze the action
m, for n > 2 as follows. Let & = (r,s) and £ = (r',s’) be two states in STn($), and let
€1, ..., €n_1 be non-idempotent generators in BT, such that (m,({®e; ®...®e, 1),£) #0.

Therefore, there exists a following sequence of transitions of states in STATE(?):

(r,s) = (ro,s¢) = (r1,s7) = (r1,87) = oo = (1, 8¢) — (Thats Sppr) = (r', s

where each transition (r;,s;) — (14, s;°

;) comes from a mutual pair and let C; be the free

circle where s;7(C;) = — and s/ (C;) = +. For each transition (r;,s) — (ri1,s5,,), it

comes from either of two following cases: 1) (my¢(ry, s7), (rip1, Siy1)) # 0, or 2) there exists

io € {1,...,n — 1} such that (moo((rs,5;7) @ €5), (Tit1, 5731)) # 0.

We now can apply a similar argument as in the proof of Proposition 32. We record the
number of + and — free circles for each state (r,s) of T by J(r,s) = (Ju(r,s), J_(r,s)).
We see that J(r;,s;) — J(r;,s;) = (1,—1) for each i € {1, ..., k}. Additionally, we evaluate

Ji = (Jiy, i) = J(ris1, si4) — J(ri, s7) as the following cases:

(N
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L. If (mae(ri, s7), (riv1, s74)) # 0, J; belongs to (—1,0),(0,1), (-1, 1).

2. If (moe((rs,87) @ €i), (riz1,8i31)) # 0, Ji, > 0 and J;_ < 0. This is because the
actions of bridge and right decoration elements do not change the number of + free
circles. Also, the action of a left decoration element will either 1) change the decoration
on a cleaved circle from + to —, or 2) create a new + free circle by splitting a + cleaved

circle, or 3) merge a — free circle to a + cleaved circle.

We also note that Jy = (0,1) and J, = (—1,0). Since (r,s) and (r’,s’) belong to STH(?),
we have J(r,s) = J(r',s') = (0,0). Furthermore, we have:

Tsz J(ri,87) ZJ—OO

k
J(r' ") — J(r,s) =

1

7

Therefore, Zk: J; = (—k, k). By looking through all of possible cases of J;, we see that k
has to be ezi:;er 0or 1. If k = 1, we need to have 9(¢) = 9(ry,s7) = O(r1,s7) = ().
However, it is a contradiction since (m,({ ® e1 ® ... ® €,-1),&') #0and n > 2. If k = 0,
n has to be 2. In this case, £’ is obtained from & by either changing the decoration on a +
circle of £ or surgering along a bridge of 7. In this case, (M2 (§ ®e1),&) = (Mar(®e1), ).
Additionally, since n has to be 2, it implies that m,, = 0 for n > 3. Due to this fact, we obtain
Mo (ERp1pe) = Ma(M2(E@p1) @ps) for p1,pe € BL,,. As aresult, M2 (£ ®e) = mor(E®e) for
any e € BI',,. It implies that the definition of my 1 is well-defined and that (((?]], M1 e, M2e)

is A, homotopy equivalent to (((&”]], myr, Mar). <&
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CHAPTER 13

INVARIANCE OF THE TYPE A STRUCTURE UNDER THE WEIGHT
MOVES AND REIDEMEISTER MOVES

13.1 Invariance under the weight moves

In Chapter 8, we proved that the type D structure in the twisted tangle homology described
in Chapter 5 is invariant under the weight moves by using the trick in [20] or [23]. Simi-
larly, in this section, we will prove that under the weight moves, the type A structure in the
twisted tangle homology is an invariant. Additionally, based on the construction of the type
A and the type D structures, there exists a type DA bimodule version in twisted tangle
homology for a tangle subordinate to an annulus (This work is joint with L. Roberts and is
in preparation to submit). Then thanks to the gluing process in [12| which pairs the type
A and type DA structures, it suffices to prove the invariance for the local case (see Figure

13.1), and the invariance for the global case follows as a consequence.

Before giving a proof of the invariance under the weight moves for these cases, we will state
precisely the necessary results of the bimodule paper ( [22]) and describe precisely how the
invariance of the type A structure for the global case follows these results and the invariance
for the local case. Let T be a tangle diagram subordinate to an annulus ¥ (see the middle
picture in Figure 13.2). In [22], by combining the constructions of the type A and type D

structures, we have the following theorem:

Theorem 61. There exists a type DA structure ([T], d1,92) associated to T which satisfies
the structure equations from [12, Definition 2.2.43]. Also, the homotopy class of ([T1], 01, 92)

as a type DA structure is an invariant of the tangle defined by T.
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Figure 13.1: This figure illustrates the tangles before and after the weights are moved along
the crossings in the local case.

g - @

Figure 13.2: This figure illustrates how to obtain a new tangle by filling a tangle embedded
in a disk in the middle of a tangle subordinate to an annulus.

Additionally, let T} be a tangle embedded in a disk D (see the left picture in Figure 13.2) so
that it is well-defined to glue along the boundary of D and the inner boundary component
of ¥ to obtain a new tangle Ty = T1#1T. We note that in Chapter 11, we associate the type
A structure to a tangle embedded in ﬁ By compactification, we can think of this tangle
being embedded in a disk and we still associate the same type A structure to it. Using the
gluing process in |12, Definition 2.3.9|, we can pair the type A structure (((ﬁ]], M1 e, M2s)
and the type DA structure ([T, d1,d2) to obtain a type A structure. Not surprisingly, this
type A structure is actually (((ﬁ]], M1 .e,M2e) (a proof of this result will be described in [22]
as well). Therefore, it suffices to prove the invariance for the local case because the invari-
ance for the global case will be followed by the result that paring homotopy equivalences
of the type A structure and the type DA structure results in homotopy equivalences of the

type A structure (see [12, Lemma 2.3.13]).

We will only give a proof for transition on the left in Figure 13.1, since the proof of the
right case is similar. Let ? be the weighted tangle before the weight w moved along the

F
crossing ¢ and let T” be the weighted tangle after the movement of w. Let {m1,,m2 4} and
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e
{m} ., mj,} be the maps defining the type A structures for (?]] and (7" ] respectively. Note
that in this case, both m; , and m , are trivial maps. We will construct an A,, morphism
- -
U = {91,195} from <((7_“]] to (1" ] as follows: e 1)y : ((?]] — ("] is the identity map since
o =
the generators of ((?}] can be canonically identified with the generators of {(71"].
= . o
® Yy : (?]] ®z, Bl's — (T"][1]. To define 1)y, it suffices to specify its values on £ ® e
where £ = (r,s) is a generator of ((?]] and e is a generator of Bl';. If € and e satisfy that
d(r,s) = s(e), r(c) =1, and e is a left bridge element; we define ¢»({®e) = w- (7, s,) where
r, is obtained by surgering along the inactive bridge resolution 7 at crossing c¢ and s, is
%
computed by using the Khovanov Frobenius algebra (note that r, is a resolution of 7" under

%
the identification of T and T') and (r,,s,) = t(e). Otherwise, we define ¥»(§ ® e) = 0.

We also illustrate the definition of 15 as the thick red arrows of Figure 13.3. Then we
define ¥y when e is any element in BI'y by imposing the following relation for each £ € ((?]]

and ey, ey € Bl'y:

Pa(§ @ erea) = ml (Va(E @ e1) @ e2) +Ua(Mae(§ ®er) @ eg). (13.1)

For 15 to be well-defined, we need to verify that with the relation we just imposed, 15(§ ®
p) = 0 for each relation p defining BI'5. Since for each e generating By, 15 (£ ®e) = 0 unless
e is a left bridge element, 12(£ ® p) is trivially 0 if p does not involve left bridge element(s).
Therefore, there are two cases to verify: 1) if p is Relation (3) in the Group I and 2) if p
is a relation in the Group III. With the aid of Figure 13.3, the proof is straightforward.
We will do one example to illustrate the method. Since p = e, ez + e4,e53 = 0, we need to
verify 15(§ ® ey eq) = 12(§ ® eq,em) where £ is the right top corner state in Figure 13.3.
Indeed, since £(c) = r(c) = 1, using Relation (13.1) and the fact that mg({ ® e,,) = 0

(because its resolution bridge is inactive), we have:

a(§ @ eyeqr) = my  (Ya(§ @ €y,) @ ).
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Figure 13.3: In this figure, the right and left columns contain the generators of the complexes
associated to the two tangles respectively. The thick red arrows define the map 5. The
symbol above each arrow specifies the element in BT’y acting on the complex. For example,
Pa(€ ®ey,) = w - & where e, is a bridge element and illustrated as in the box of the right
column. Additionally, the dashed dotted purple, the blue and the green arrows stand for
the actions of the right, left bridge elements, and the right (or left) decoration elements of
the complexes on themselves respectively. For example, my (€3 ® ec) = & where ec is a
right (or left) decoration element and illustrated as in the box of the left column.
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Thus, in Figure 13.3, we go along the thick red arrow to get the result of e,, acting on ¢
and follow the dashed dotted purple curve due to the action of ez;. Similarly, ¢ (£ ® e, ez)
is calculated by first going along the red arrow under the action of e,, and then following
the dashed dotted purple arrow e;z;. Since the result will be the same if we follow either of
those two paths, we finish the proof that 1y is well-defined in this case. The proof of other

cases can be handled by the same method and we leave the verification to the readers.
Proposition 62. U = {¢;, 1} is an Ay morphism from <((7_“]] to (T"].
Proof. We need to verify the three following conditions:
%
1. ¢4 is the chain map from (((%]],ml,) to ((1"],m}.,).
2. my o (1h1(§) ®@e) +m (12 (§@e)) + 11 (Ma,e(§ D)) +12(ma,e (§) R €) +12(E®dr, (€)) = 0.
3. P2(§ ® ere2) = Pa(mae(§ @ e1) @ e2) +my (Yo(§ @ e1) @ e2).

The first condition is trivially true since both m; . and m/l’. are zero maps. The third one
comes from Relation (13.1) that we impose on 5. For the second condition to be verified,

it suffices to prove that:

(€ @ dry(e)) = my (11(8) @ €) + b1 (mae(§ @ €)). (13.2)

First of all, we will prove that Equation (13.2) is true when e is a (length 0 or 1) generator
of BI'y. If e is not a left decoration element, the left hand side is 0 by the definition of dr,.
Similarly, the right hand side is also 0 because the action of e on (<7<T’ ] does not change after
we move the weight and thus, mj ,(11(§) ® €) = Y1(mel({ ® €)). If e is a left decoration

element & where C' is + cleaved circle of 9(€), there are two possibilities:

1. If C is the only cleaved circle of 9(&) then:

my (V1(§) ® e) +Y1(mae(§ ®e)) =0
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because both terms in the identity are g (r, s¢) (the moved weight w is still on C' in

this case)

. If C'is not the only one, then:

My o ($1(§) @ €) + Y1(mae(§ © ) = w- (1, 50).

On the other hand, by the definition of dp, and Relation (13.1), 12(€ ® dr,(éc)) is
calculated as the sum of paths starting at &, then following either the dashed blue
arrow (the action of a left bridge element) or the thick red arrow (the action of ),
and then following either the thick red arrow or the dashed blue arrow (see Figure
13.3). Note that if C is the only cleaved circle of £ (as in the previous case) then there
are two such paths and their sum will be canceled out. Otherwise, we have only one
such path and the end point of this path is (7, s¢). The reason why we have only one

path in this case is that according to the definition:
(€ ® dr,(80)) = a6 @ HET) = Ya(maa(§ © &) @ &) +my (1a(6 ® &) © &)

and depending on whether £(c) = 0 or £(c) = 1, the second term or the first term in

the latest sum will disappear. Furthermore, the weight w comes from the chain map

Ya.

Therefore, we finish the proof when e is of length 0 or 1.

Next we prove that Identity (13.2) is true when e is a general element in BI's. Let e; and

ez be two elements of BI'y. For ease of notation, we let my, mj and d stand for my,, mj,

and dp, respectively. Then
V2(€ @ d(erez))

= o(§ @ (dey)ez) + Pa2(€ @ er(de))
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= Pa(ma(§ ® dey) @ ez) +miy(Y2(€ ® der) ® ez) 4 a(ma(§ ® 1) @ des)+
my(12(€ @ e1) ® dey)

= [wg(mQ(f & del) X 62) + mg(?/@(g & 61) (%9 deg)} + m’z(wQ(f (%9 del) X 62)+
P2 (ma(§ ® €1) ® des)

= [Y2(ma(€ @ deq) ® ea) +mb(1h2(€ @ e1) @ dey)| + [mh(mh(¥1(E) ® e1) ® ez)+

mh((Y1(€) ® e1) ® ea)] + [th1(ma(ma(§ ® 1) ® e3)) + my((1(E) ® e1) ® e3)]

= my(my(1(§) ® e1) @ €2) + Yr1(ma(ma2({ ® €1) @ €2)).
The fourth equality is true because by induction Equation (13.2) is true for e; and es.
The last equality is obtained from the fourth equality because ¥s(mz(§ ® dep) ® e3) =
mh(12(§ ® e1) ® deg) = 0. Indeed, de; (i = 1,2) is either 0 or a sum of product(s) which
contains a factor of the form g& As a result, the actions of de; on our complexes (?]]

o vial since T pou :
and (71" ] are trivial since 7' and 7" have only one crossing. Therefore,

V(£ @ d(erez))
= mhy(mh(11(§) ® 1) @ €2) + Y1 (ma(ma(€ ® 1) @ 7))

= my(11(§) @ ere2) + 1(ma(§ ® ere2)).
As a result, we have proved that ¥ = {(¢1,15)} is an A,, morphism from ((?]] to ((?’]] <&

If we define ® identically as W but reversing the roles of (7" ] and (?]], we immediately

have the following:

1. (Vod), = Iy since Y1 and ¢; are identity maps.

2. (Wod)y =1 0¢y+1y0 (¢ ®1I) = 0 since both terms are ¢, under the canonical
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Figure 13.4: The three local Reidemeister moves.

%
identification of generators of (?]] and (1"].

3. (Vod); = 1s(ppo ® ) = 0 since both 1)y and ¢ are supported on states & where

£(c) = 1 and their images contain states whose crossing c is resolved by 0-resolution.

Therefore, ¥ o ® = 1((’?]]' Similarly, we have ® oW = 1 ;. As a result, (((?]], M1.e,M2e) 1S

(71

. . pos
isomorphic to ((1"],m} ,,m5,) as type A structures.

13.2 Invariance under Reidemeister Moves

Due to the bimodule structure introduced at the beginning of this chapter, we only need to
prove the invariance under the Reidemeister moves in Figure 13.4. The strategy is to use
the isomorphism in Section 13.1 to move the weights to any arcs whose one of end points
belongs to P,,. We then can modify Roberts’s proofs of the invariance in the untwisted case
(see [18, Section 6]). Let T and T’ be the tangles before and after the Reidemeister moves.
We will briefly sketch his arguments for the untwisted case and how we can apply those

arguments for our case:

1. Since the weights are close to the y-axis, we have m; , = m;.

%
2. Decomposing the complex of tangle (1" ] as a direct sum where each summand cor-
<—
responds to a resolution of the crossing(s) of the tangle 7", there always exists a
summand V consisting of states which have a free circle in the generating resolutions.

We then decompose V' =V, @ V_, based on the decoration on the free circle.
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3. For the differential m,, there are two types of isomorphisms from merging a + free
circle to a decorated circle or dividing out a decorated circle to get a new — free circle.
We can use this isomorphism to cancel out the summand V,, and its image daps(Vy)
in the case of the Reidemeister move I, or V; and dapg(V;) first and then cancel out
V_ and its preimage under the dividing isomorphism in the case of the Reidemeister
moves II and III. After the cancellation, we get exactly the same chain module as
before the Reidemeister move with the possibility that the higher order actions might

appear.

4. Roberts proves that the higher order actions actually do not show up because of two
properties. The first property is that the image of m; on V. is another summand of
complex, which is canceled out by the cancellation process. The second property is
that the images of higher order actions always lie on V. and this will be canceled out

at the end.

5. For our case, the same technique can be used to prove there is no higher order actions.
Since we have m;, = my, we definitely have the first property. (Note. If we do
not move weights close to the y-axis, the image of m;, on V, also intersects V_).
Additionally, since mgy, is different from msy only on the action of left decoration
elements, the image of mq 4(V; ) lies in V. (again, it is due to the fact that the weights
are near the boundary of the tangle) and therefore the image of the higher order
actions lie in V. At the end, they all disappear when we cancel out V. The same

argument can be applied for V_ if needed (as in Reidemeister move II or III).

6. After canceling out those terms, we obtain almost the same type A structure associated
to the tangles before the Reidemeister moves. The only difference is that we are
working over different ground fields. This issue can be handled exactly like the case
of the type D structure (see Chapter 10) by using the stable equivalence relation,

described in Section 9.2.
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Therefore, pursuant to the bimodule version in the twisted tangle homology, we have the

following theorem:

Theorem 63. Let % be a left tangle with a diagram ? The stable homotopy class of

(((?]],ml,, Mae), defined as in Section 11, is an invariant of the left tangle ?
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CHAPTER 14

RELATION TO THE TOTALLY TWISTED KHOVANOV HOMOLOGY BY
GLUING LEFT AND RIGHT TANGLES

As described in Chapter 1, let T be a link diagram for a link 7 which is divided by the
y-axis into two parts: a left tangle ? and a right one 7 Using the pairing technique in
Section 9.4, we will prove that the chain complex (((?]] X, [[?}), O¥) obtained by gluing the
type A structure (((?]], M1.e,Mae) and the type D structure ([ ?)), (?z) is chain isomorphic

to the totally twisted Khovanov complex of T'.

Let Fr be the field of fractions of Py = Zslxf|f € ARC(T)] where ARC(T') is the set of
segments whose endpoints are either the crossings of T" or the intersection points of T" and
the y-axis. Let [T] be the graded Khovanov complex over Fr, equipped with a totally
twisted differential 0 = Ok + Oy r where Ok is the regular Khovanov map and Oy r is a
Koszul map defined similar to 8y (see [19] for more details). Recall that ([T7],0) is a link

invariant.

There are natural injections ¢; : st — Fr and ¢, : F? — F7, which come from the fact
that ARC(T') is the disjoint union of ARC(?) and ARC(?). To describe the glued complex,
we first need to describe the type A structure (Fy, (((? D)s Fo,(mie), Fp,(mas)) and the type

—
dr.)). By using the formulas in Definitions 40 and 48, over Fr,

D structure (G, ([ 7). G, (
the generators of Fy, (((?]]) and Qd,r([[?)) are identified with the generators of (?]] (as a
vector space over Fs) and [[?» (as a vector space over Fz), respectively. Additionally,

—
5T, °

under this identification, the maps F,(m1,.), Fp,(mae) and Gy (d1.) are identical to m; ,

—
me.e and 074 respectively.

93



Therefore, we can use (((?]],ml,.,mg,) to stand for (Fy, ((%ﬂ),}"@ (M1.e), Fe,(Mae)) and
([[?), (ﬁ) to stand for (Q(;gr([[?)), g@(?,})). Keep in mind that from now to the end of
this chapter, (?]] and [[?» are vector spaces over Fr while m; 4, mo, and E: are defined
in Chapters 5 and 11. We also note that in the type A structure (respectively the type D
structure), the weight of a cleaved circle in a state is calculated as the sum of weights on

the left-side (respectively right-side) arcs which belong to this circle. The module structure

of the glued complex then can be described as:
(T1B.[T)={T1ez[T)

Additionally, the differential of this complex is given by the following formula (see Section

9.4):

Pz ® y) = m(z) @y + (mae @ T)(z @ dra(y)).

We now prove the gluing theorem:

Theorem 64. (((?]] X, [[?), 0% is isomorphic to ([T, D).

Proof. Due to the module structures of (?]], [[?)) as vector spaces over Fp and the action
of Z,, on them, (?]] X, [[?» is a vector space over ' whose generators are identified with
the generators of [T (see [18, Section 7] for more details). Furthermore, this identifica-
tion was proved to preserve the bigrading, and thus, it is (-grading preserving. Therefore,
it suffices to prove that, under this identification, O¥ = d. Since mie = daps + Oy and

— = =
67,6 = 07 + Oy, the differential % can be decomposed as follows:

Bz @y) = [daps(z) @y + (M2 @) (2 ® 5@))] + [Ov(z) @y + (Mg —m2) @) (2 @ @(y))
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%
+(mae @ I)(z @ 0v(y))].
From |18, Proposition 36|, we know that:

—
dApS ®]I+ (m2 ®H)(H® 6T) = aKH

Therefore, we will complete the proof of the theorem if we can show:
— —
() @y + ((m2e —m2) @I)(z ® o7(y)) + (M2e @D (z @ dy(y)) = hr(r@y) (14.1)

for x and y are generators of (?]] and [[?)) such that Iy = Lo

We note that x ® y specifies a resolution (r,s) of [T, consisting of a collection of circles

which can be divided into four groups:
1. Circles decorated by —.
2. Left free circles decorated by +.
3. Right free circles decorated by +.
4. Cleaved circles decorated by +.

Therefore, the right hand side of Equation (14.1) can be written as follows:

dreey)= Y  wersc)
ce@UB)UM)

where we = >, xy and U stands for the disjoint union.
fearc(C)
On the other hand,

v(r) @y =Y we(r,sc).

Ce(2)
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Additionally, according to the construction of mg,, the action mg, — ms is supported only

on left decoration elements. As a result:

(mae = ma) @Iz @ b7(y) = D (e —ma) @ D(z ® & © y10)

= %(T, SC)'

%
From the definition of dy,, we can calculate the last term of the left hand side of Equation

(14.1) as:

(Mmoa @D @5 Y) = 3. @(mpe ®D(@ @R Dyc) + > wolmae @ D)@ ® Iogye) © yc)

Ce(4) Ce(3)
= Z we(r, s¢) + Z we(r, sc)-
Ce(4) Ce(3)

Rewriting the left hand side of Equation (14.1), we have:

LHS = Z we(r, se) + Z we(r, se) + Z (o + W) (r, s¢).

ce(2) Ce(3) Ce4)
Since we = e + wé for each cleaved circle, we can conclude that Equation (14.1) is true

and thus, 0F = 9. Thus, (((?]] X, [[?)7 82) is chain isomorphic to ([T7,9). ©

96



CHAPTER 15

EXAMPLES OF THE TYPE D AND THE TYPE A STRUCTURES

In this chapter, we will give examples calculating the type D and type A structures for

several knots and links.

Example 1 : Hopf link
Consider the Hopf link T" which is transverse to the y-axis at 4 points. It divides the link
T into two parts: the left tangle ? and the right one ? Label each arc of T" as in Figure

15.1.

We first describe the type D structure on [[?)} As shown in Figure 15.2, [[?) can be
thought as a vector space over Fr (by the argument as in the third and fourth paragraphs
of Chapter 14), generated by six elements: 37...7 §_6> corresponding to the bottom row of the
figure from left to right. We should notice that for each generator, the decoration on the

circle passing through the marked point is always — due to our setting (see the construction

of [[?» in Chapter 4). Their (-gradings are ’Tl, }1, 0,

>

}l, and % respectively. For example:

since the bigrading of &, is (—1,—5/2) due to ny (7) = 0 and n_(7T") = 2, the (-grading
%

of & is =14+ 5/4 = 1/4. We also denote {H}i:h_ﬁl the left bridges as in the figure, and

{VJ}}FLQ and [ the right active resolution bridges as in the below figure. Let C' and D be

— —
the + circles of & and &4 respectively.
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Figure 15.1: Hofp link
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Figure 15.2: Generators of the complex obtained from the tangle

E it 7;7 % 7 <77_3
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X —
We now can describe 7 ,:

Sra(&) = e ® & + e ® & + 60 + (23 + 24)20] © &
ra(6) = e ® & + o5 ® & )
m(§)=€%®§+[%+(fxz+x3)£]®g

— = —
070(&6) = €87 @ &5

We next describe the type A structure on (?]] Similarly to [[7), (?]] is a six dimensional
vector space over Fp, generated by {Z}Z:ﬁ where <§_, has the same boundary as Z We
label the bridges of each generator g exactly as we labeled the ones for 3 in the type D
structure. For example: <§_1 has a left active resolution bridge ﬁ and right bridge 7{ We
also let %Z and ﬁ be the right bridges of (5_4 and g respectively. Additionally, the (-grading
of E, 56 are 4 T Z and 0, respectively. Since none of generators has a free circle,

the type A structure on (?]] can be described as follows:

mie =0
(& @em) =&
(& @em) =&
Ge) =5

mg.@@%) -5 (15.2)
(54 ®ez) = <_3
(54 & €D) = %_
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Figure 15.3: An example about a decorated tangle

Then (?]] X [[?» is a graded vector space over Fr, generated by {{},_15 where & =

& @z, &. Since (&) = ¢(8) + (&
respectively. Since m; o = 0, the differential of (?]] X [[7) is:

), the (-grading of &i,....6 are 3+, 3, %, 3, % and 3

—
Pz @y) = (mae @T)(2 @ d1.0(y)).
Therefore, using Formulas (15.1) and (15.2), we have:

8®(§1) =&+ &+ (x5 + 14 + 27 + 18)&2

(&) =&

(15.3)
(&) = (z2 + 3+ 36 + 27)&s5
(&) = &.

The above description of (-complex (((?]] X [[?), O®) is exactly the same as the totally
twisted Khovanov homology of Hopf link whose homology is Fr & Fr, occurring in the (-

grading %

Example 2 : Consider the tangle diagram 7 as in Figure 15.3.
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Figure 15.4: A complete resolution of the tangle diagram

We label the five crossings of 7 as in the above figure. In this example, we will investigate

the image of c5n—>T on some generators of [[Cﬁ)) Recall: ([[Cﬁ))jn_;

) is the deformation
retraction of ([[?)), (ﬁ), defined in Section 7. For this tangle ?, there are two left planar
matchings p; (containing an arc which connects the marked point and the bottommost point
on the y-axis) and ps. A generator of [[Cﬁ ) is obtained by resolving the crossings of ? by
either a O-resolution or a 1-resolution in such a way that it has no free circles, then capping
off by either p; or p, and finally, decorating the unmarked cleaved circle (it might not exist)
by 4. Therefore, we can encode a generator of ﬂﬁ) in the form of either &, i OF Ewprnnit
where each x receives the value in {0, 1}, depending on the resolution of the corresponding
crossing. ¢ receives the value of either 1 or 2, depending on the way we choose either left
planar matching p; or ps. Additionally, if the generator has an unmarked cleaved circle, we

use the second form to specify the decoration on the unmarked circle. Otherwise, we use

the first form to represent this generator. For example, Figure 15.4 represents &ypo00,1. We
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have:

H _ —
On,7(800000,1) = [T3 + T6+T12] 1[8(51) ® &10010,1 + (T2 + 27 + 1] 118(51) ® &o1001,1

+ ([w3 + 27 + 211] " + [22 + 27 + 210] ") Lo(er) @ Eoor01,1
+ ([w3 + @6 + 212) 7+ w3 + 27 + J511]71)[8(51) ® &o0110,1 (15.4)
+ e @ 100001, + €53 @ Eo1000,1,—

+ e © 00000,2,— -

where o) = To(epono)s 167 fi=1,2 are the right bridge elements of BI'y, corresponding to
the change of the cleaved links after surgering oo000,1 along the active resolution bridge at

crossing 1. ﬁq_l is the unique left bridge of the left planar matching p;.

As we can see, in the right hand side of Equation (15.4), the first (or second) term comes
from a generator, obtained from {ppp0,1 by surgering along two active resolution bridges.
Depending on which crossing we resolve first, there are two ways to make this surgery.
However, there is only one way which creates a free circle, while the other way will change
the boundary. On the other hand, both ways to surger o001 to obtain a generator of the
third (or fourth) term contain free circles, and, as the result, we count the coefficients for

both paths.
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—
Similarly, we compute 6, 7(£00000,2,+):

H . o
On,1(&00000,2,4) = [T3 + 26 + T12] 1[8(52) ® Ero010,2,4 + [T2 + 27 + 10 1[8(52) ® £01001,2,+

+ ([3 + 27 + 211] " + [29 + 27 + 9510}_1)[6(52) ® £00101,2,+

+ ([13 + 76 + 219] " + [23 + 27 + $11}71)[6(52) ® £00110,2,+

+ e53 @ &10000,2 + €53 @ Eo1000,2

+ e85 @ &oo000,2 + [% + (w2 + 23 + 24 + 6 + 17 + T8 + T10 + 11 + 3312)€_C>] ® £00000,2, -
(

15.5)

where Iye,) = 1a(eooo002.1)- 72 is a unique left bridge of p, and C stands for the unmarked
cleaved circle of &yopo2,+. We note that the main difference between Equation (15.4) and

—
Equation (15.5) is that the image of 0,7 on o002+ contains a term coming from a deco-

ration element.
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