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ABSTRACT 

 

 

This dissertation focuses on the design and the application of microchemical systems to 

understand multiphase flows in upstream hydrocarbon and natural gas productions.  

Offshore petroleum and natural gas catastrophes, such as the Deepwater Horizon spill of 

2010, motivate the need to understand how to minimize the introduction of potentially invasive 

compounds while maximizing their efficacy during emergency remediation. The microfluidic 

stabilities of mineral oil-seawater multiphase flows in the presence of model dispersants were 

studied for We < 1. Introducing dispersants at varying dimensionless volumetric injection rates, 

ranging from 0.001 to 0.01, transitions from stable slug flow to the bubbly regime. 

Dimensionless mass ratios of three model dispersants to the mineral oil necessary to establish 

emulsions were estimated from 2.6x10
-3
 to 7.7x10

-3
. Residence time distributions of seawater 

single- and mineral oil-seawater multi-phase flows, laden with dispersants, were also 

investigated. Increasing the dimensionless dispersant injection rate from 0 to 0.01 was observed 

to increase convective dispersion, which was confirmed by estimations of the vessel dispersion 

number and the Bodenstein number.  

The deposition and dissolution of asphaltenes in porous media, an important problem in 

science and macromolecular engineering, was for the first time investigated in a transparent 

packed-bed microreactor (ɛPBR) with online analytics to generate high-throughput information. 

Residence time distributions of the ɛPBR before and after loading with ~29 ɛm quartz particles 

were measured using inline UV-Vis spectroscopy. Stable packings of quartz particles with 



 

iii  

 

porosity of ~40% and permeability of ~500 mD were obtained. Temperature (25.0ï90.0 C̄), n-

heptane composition (50.0ï80.0 vol%), and n-alkane (n-C5 to n-C9) were all observed to 

influence asphaltenes deposition in the porous media, and reduced dispersion was obtained in the 

damaged packed-bed by estimating disperision coefficients and the Bodenstein number. 

Deposition by mechanical entrapment dominated the mechanism in all scenarios, as discovered 

by the simplified Kozeny-Carman and Civanôs permeability-porosity relationships. Role of water 

on the deposition mechanism was then investigated. Porosity loss and permeability impairment 

of the porous media for water mass fractions of <0.001 to 34.5 wt% were investigated. 

Interestingly, a switch in the mechanism of water (from 0.030 to 3.18 wt%) on the accumulation 

was discovered. Analyses of porosity-permeability relationships revealed competition between 

adsorption and desorption followed by pore-throat plugging via mechanical entrapment for all 

mass fractions of water studied. For the dissolution of asphaltenes in porous media, many factors, 

such as shut-in time, temperature, Reynolds number, and n-heptane compositions, were studied, 

and the dissolution of asphaltenes was investigated. The work described within this dissertation 

undergirds that microchemical systems are promising tools that impact dispersant science and 

asphaltenes science. Microchemical systems also potentially aid the design of reservoir 

treatments.  
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CHAPTER 1 

INTRODUCTION 

 

1.1. Oil dispersant 

The Deepwater Horizon oil spill on April 20, 2010 attracted attention to many researchers, 

both from industry and academia, due to its deleterious damage to the marine and wild life 

habitats. It is the worst environmental disaster in the history of the United States
1
. A well-known 

remediation technique applied to deal with the spilled oil and protect the wetlands and beaches 

was the use of dispersants on the ocean surface and also at the wellhead
2
. Negative consequences 

exist when the introduction of dispersants is insufficient or excess. So it is of significant 

importance to answer the question of what mass of dispersant is suitable. Several factors
3
, such 

as salinity, temperature, mixing energy and oil weathering, should be considered in determining 

the total mass of dispersant needed.  

Other remediation techniques to deal with the spilled oil include the usage of booms, barriers, 

skimmers, sorbents and in situ burning
2
. However, the use of dispersants is the most convenient 

way, especially in harsh weather conditions. The advantages of dispersant use mainly include 

accelerating the bacteria biodegradation process by significantly increasing oil droplet surface 

area, allowing for rapid treatment of large ocean surface areas, and making oil less likely to 

adhere to wild animals
3
.  



 

2 

 

   Dispersants are usually mixture of organic solvents and surfactants designed to lower the 

surface tension. The role of dispersant is to disrupt crude oil slicks into fine droplets that are 

eventually biodegraded by natural bacteria
4
. The common anionic surfactants used in oil spill 

include sodium dioctyl sulfosuccinates, potassium lauryl sulfates, and sodium dodecyl sulfates. 

Nonionic surfactants usually include sorbitan monooleate, polyoxyethylene sorbitan monooleate, 

polyoxyethylene sorbitan trioleate, di(propylene glycol) butyl ether, and 1,2-propanediol. 

Dispersant chemistry is complex due to both the environmental concern, and the factors that 

directly influence dispersant efficiency
5
.  

1.2. Deposition and dissolution of asphaltenes 

Asphaltenes are typically defined as n-heptane(or n-pentane)-insoluble, toluene-soluble 

component of a crude oil
6
. The asphaltene fraction consists primarily of aromatic polycyclic 

clusters and some heteroatoms (N, S, O), and trace amount of metals like Fe, Ni, and V. As the 

most enigmatic component of crude oil, asphaltenes are problematic in wellbores, transportation 

flow lines and production facilities
7-16

. Currently, the essential topics of research in this 

important area of science include asphaltenes structures
15-20

, aggregation and solubility 

behaviors
13, 17, 21-26

, precipitation (or flocculation) and deposition (or accumulation)
9-12, 14, 27-29

, 

dissolution
30-32

 and so on. Understanding asphaltene science is of significant importance to green 

chemistry and sustainability, and tremendous potential exists for microfluidic devices to make 

contributions by merging oilfield chemistry and microchemical systems to bridge the knowledge 

gap between molecular, nano- and micro-scale level events and oilfield production.  

Many factors, such as changes in shear rate, temperature, pressure and composition may 

cause asphaltenes to precipitate and deposit
6
. Asphaltenes can deposit almost anywhere in the 

production, transportation and storage systems, but the most damaging place is the near-wellbore 
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region. The onset of precipitation occurs at the upper asphaltene precipitation pressure, and the 

rate obtains a peak at the solvent bubble point
33

. Subsequent asphaltene deposition leads to the 

accumulation of organic material that constrains reservoir fluid flows. There are two 

recognized models: adsorption and mechanical entrapment
33

. The adsorption process is 

reversible with asphaltenes desorbing from the porous media as the asphaltenes 

concentration in bulk decreases. Mechanical entrapment (e.g., hydrodynamic bridging) is 

a physical blocking process of pores by the precipitated asphaltene particles. Both 

adsorption and mechanical entrapment result in the loss of porosity and the impairment of 

permeability of the porous media which in turn lower the crude oil yield. Traditional 

asphaltenes intervention and remediation techniques are usually economically expensive. 

Squeeze injection treatments require shut-in time and considerable amount of chemicals 

that could potentially impact the local environment. Other mechanical removal techniques 

such as pigging are potentially risky due to the possibility of pigs
34

 getting stuck. As a 

consequence, understanding the precipitation and deposition mechanisms of asphaltenes 

in reservoirs to predict the presence and type of trouble zones is necessary to design 

remediation treatments that in turn minimize production losses of considerable economic 

magnitude. 

1.3. Microchemical systems  

Microfluidic systems, as model laboratory devices, allow for the precise process 

control of mass transfer limited systems
35-52

. The high surface-to-volume ratios attainable 

in micro-fabricated devices result in fast heat and mass transfers which suggest that 

microfluidic systems offer advantages in studying flow and reaction behavior relative to 

conventional macroscopic systems
36

. Consequently, the microfluidic dispersion of 
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mineral oil-seawater multiphase flows and the precipitation, deposition and dissolution of 

asphaltenes in microchemical reactors
40-43

 offers novel approaches to overcome transport 

limitations while discovering the nature of the kinetic parameters that control the 

remediation.  
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CHAPTER 2 

MICROFLUIDIC DISPERSION OF MINERAL OIL-SEAWATER MULTIPHASE FLOWS IN 

THE PRESENCE OF DIALKYL SULFONATES, POLYSORBATES, AND GLYCOLS 

(Green Process Synth. 2013, 2, 611-623) 

 

Abstract 

The role of dispersants on hydrocarbon phase behavior in seawater is an important problem 

that influences marine environment ecology. Offshore petroleum and natural gas catastrophes, 

such as the Deepwater Horizon spill of 2010, motive the need to understand how to minimize the 

introduction of potentially invasive compounds while maximizing their efficacy during 

emergency remediation. The microfluidic stabilities of mineral oil-seawater multiphase flows in 

the presence of model dispersants were studied for We < 1. Introducing dispersants at varying 

dimensionless volumetric injection rates, ranging from 0.001 to 0.01, transitions from stable slug 

flow to the bubbly regime. Dimensionless mass ratios of three model dispersants to the mineral 

oil necessary to establish emulsions were estimated from 2.6x10
-3
 to 7.7x10

-3
. Residence time 

distributions of seawater single- and mineral oil-seawater multi-phase flows, laden with 

dispersants, were also investigated. Increasing the dimensionless dispersant injection rate from 0 

to 0.01 was observed to increase convective dispersion, which was confirmed by estimations of 

the vessel dispersion number and the Bodenstein number. The observations undergird that 

microfluidics are useful laboratory techniques to identify the transition to bubbly flow where 
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bacteria consumption rates could potentially be enhanced, while minimizing the dispersant mass 

introduced into calm-sea marine environments. 

2.1. Introduction 

 

The Deepwater Horizon oil spill, on April 20, 2010, is regarded as the worst environmental 

disaster in the history of the United States
1
. It caused extensive damage to the marine and 

wildlife habitats and disrupted the lives of many people. A remediation technique applied to 

protect the wetlands and beaches from the spreading oil
2
 was the use of dispersants at the 

wellhead and on the ocean surface. Tradeoff exists in such a catastrophe between the negative 

consequences of the hydrocarbon and the dispersants themselves introduced to remediate the 

hydrocarbon release. Answering the question of what mass of dispersant is critical requires 

principal understanding of the phase behavior. Several influencing factors
3, 4
 such as salinity, 

temperature, oil weathering, mixing energy, and particles should be considered in determining 

the composition and the total mass of dispersants needed to engineer remediation techniques that 

preserve the environment.  

Remediation techniques
2
 applied to protect the wetlands and the beaches from the spreading 

crude oil mainly include the usage of booms, barriers, skimmers, sorbents, dispersants, and in-

situ burning. The use of dispersants at the wellhead and on the ocean surface is convenient, 

especially in harsh weather conditions
3
.  Other advantages of dispersant use

3
 include allowing for 

rapid treatment of large ocean surface areas, accelerating the bacteria biodegradation process by 

significantly increasing oil droplet surface area, and making oil less likely to adhere to sediment, 

wildlife, and shorelines. Remediation dispersants are blends of organic solvents and surfactants 

(mixtures of ionic and non-ionic components) designed to lower the interfacial tension, which 

disrupts crude oil slicks into fine droplets that are eventually consumed by natural bacteria
5
. 



 

11 

 

Specific examples of the anionic surfactants used in the Deepwater Horizon spill include sodium 

dioctyl sulfosuccinates, potassium lauryl sulfates, and sodium dodecyl sulfates. Nonionic 

components include sorbitan monooleate, polyoxyethylene sorbitan monooleate, 

polyoxyethylene sorbitan trioleate, di(propylene glycol) butyl ether, and 1,2-propanediol. The 

chemistry is complex in its design because of both environmental concerns and functionality, and 

the salinity directly influences dispersant efficacy 
6
. 

Microfluidic systems, as model laboratory devices, elucidate the critical formulation 

conditions needed when absolutely necessary to artificially create hydrocarbon dispersions. 

Microfluidics take advantage of reduced mass and heat transfer limitations, enhanced mixing, 

model fluid mechanics, and improved surface-area-to-volume ratios
7-27
 that make studying 

multiphase dispersant systems superior relative to conventional batch techniques. Microfluidic 

systems are generally constrained to low Reynolds number laminar flow due to their reduced 

length scales
8
, which inherently rely on diffusive mixing principles. Multiphase flows in 

microfluidics, however, have been shown to achieve mixing in microseconds
9, 28-31.

 

Consequently, the mapping of intrinsic fluid mechanics is made possible and the conditions of 

their transitions from segmented flows to bubbly flows readily available
9, 32-34

. Such information 

is critical to identify interfacial surface areas of immiscible liquid-liquid systems. 

In the present study, we explore for the first time microfluidic systems towards understanding 

why model dispersants influence mineral oil-seawater phase behaviors. Classical chemical 

engineering reactor design principles are used to delineate the critical mass of dispersant 

necessary to remediate mineral oil in model seawater. The work presented herein is motivated, in 

part, by the need to minimize chemical additives during an environmental disaster (e.g., an oil 
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spill). The results of our dimensionless analogy demonstrate microfluidics as promising tools to 

minimize chemical additives and to engineer formulations based on science and engineering. 

2.2. Experimental section 

 

2.2.1. Chemicals 

Sorbitan monooleate, polyoxyethylene sorbitan trioleate, dioctyl sulfosuccinate sodium salt, 

di(propylene glycol) butyl ether (mixture of isomers), and sea salts were obtained from Sigma-

Aldrich (St Louis, MO, USA). 1,2-propanediol, sodium benzoate, and kerosene (low odor) were 

purchased from Alfa Aesar (Ward Hill, MA, USA). Polyoxyethylene sorbitan monooleate was 

acquired from VWR International (West Chester, PA, USA). Mineral oil (White, Light) was 

obtained from Avantor Performance Materials (Phillipsburg, NJ, USA). All chemicals were used 

without further purification.  

2.2.2. Experimental setup 

 

The experimental setup is schematically illustrated in Figure 2.1. Dispersant, mineral oil and 

seawater were delivered into a 6 ɛL microfluidic chip (0.15x0.15x340 mm, Micronit 

Microfluidics, The Netherlands) using three syringe pumps (PHD 2000, Harvard Apparatus, 

Holliston, MA, USA ), one 0.5 mL glass syringe and two 5 mL glass syringes (SEG Analytical 

Science, Austin, TX, USA). The syringes and the microfluidic chip were connected using fluidic 

Connect 4515 (Micronit Microfluidics, The Netherlands), 150 ɛm I.D. tubing (Perkinelmer, 

Waltham, MA, USA), 500 ɛm ID tubing (Idex Heath & Science, Oak Harbor, WA, USA), and 

PEEK ferrules (Idex Heath & Science, Oak Harbor, WA, USA). A StereoZoom Microscope 

(VWR international West Chester, PA, USA) with a USB digital camera (DV-500) was used for 

imaging. The camera was linked to a computer. 
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Figure 2.1. (A) Schematic flow diagram of the experimental setup used to study the stability of 

mineral oil-seawater multiphase flows in the presence of model dispersants. Photographs of (B) 

the enlarged 6 ɛL microfluidic chip and (C) the packaged system with fluid delivery and exiting 

connections are also provided. 

2.2.3. Reagent preparation 

 

Seawater was prepared by dispersing 3.5 wt% sea salts into deionized water. Using 

commercial sea salts provides a reproducible solution of known composition, and it minimizes 

biological effects. Table 2.1 shows the typical composition of seawater. Model dispersant was 

also prepared by first mixing the components according to the molar fractions shown in Table 

2.2. Kerosene was then added to the mixture. Samples were named based on their kerosene 

contents: Model Dispersant I (75 wt% kerosene), Model Dispersant II (50 wt% kerosene), and 

Model Dispersant III  (25 wt% kerosene), respectively. 
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Table 2.1. Typical composition of seawater (Salinity = 35). 

Component Concentration 

(mmol/kg) 

H2O 53600 

Cl
- 

546 

Na
+ 

469 

Mg
2+ 

52.8 

SO4
2- 

28.2 

Ca
2+ 

10.3 

K
+ 

10.2 

HCO3
-
 2.06 

Br
-
 0.844 

BO3
3-
 0.416 

Sr
2+

 0.091 

F
-
 0.068 

 

 

Table 2.2. Molar composition of model dispersant less kerosene. 

Chemical Name Molecular Structure Molar Content 

( mol % ) 

Sorbitan Monooleate 

 

 

18.0 

Polyoxyethylene 

SorbitanMonooleate 

 

 

9.5 

Polyoxyethylene 

Sorbitan Trioleate 

 

 

3.1 

Dioctyl Sulfosuccinate 

Sodium Salt 

 

 

8.7 

Di(propylene glycol) 

butyl ether, mixture of 

isomers 
 

 

10.1 

1,2-Propanediol  

 

50.6 
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2.2.4. Residence time distribution  measurements 

 

The residence time distributions (RTDs) of the seawater single-phase and seawater-oil-

dispersant multiphase were measured using an inline UV-Vis setup, as shown in Figure 2.2. 

Syringe pumps and 5 mL SGE glass syringes were used to refill seawater and oil into the 

microfluidic chip. Sodium benzoate with concentration of 0.04 wt% in seawater was used as the 

tracer, and was injected into the seawater phase by a microscale injector before the two phases 

contact. The distribution of tracer was measured using the UV-Vis setup at the outlet of the 

microfluidic chip. The microfluidic chip, microscale injector and the UV-Vis setup were 

connected by 0.005ò tubing to reduce the dead volume. Both lamps on the light source were 

allowed to warm up for at least 20min before operating the experiments.  

 

Figure 2.2. (A) Schematic diagram of continuous inline UV-Vis spectroscopy used for RTD 

measurements. (B) Microscale injector with a 0.75 ɛL sample loop (6 cm of 0.005ò I.D. red 

tubing) and (C) flow cell with integrated 400 mm ID quartz capillary. 
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2.3. RTD theory and dispersion models 

 

Residence time distribution (RTD) measurements can be used for characterizing laminar 

flow profiles
35-43

, and the measurements elucidate the dispersion properties of single-phase and 

multi-phase flow in microfluidic systems
44-46

. Though segmented flow formed by immiscible 

liquids is a well-known phenomenon to reduce the unwanted axial dispersion
47

, how organic 

dispersants influence the axial dispersion of multiphase systems is not fully understood. Better 

understanding of the effects of dispersants on the axial dispersion is critically important for the 

study of materials synthesis, chemical reaction and environmental protection.  

Residence time distributions
35, 36

 are described first to best understand the multiphase flows. 

For the pulse injection of a tracer molecule (e.g., sodium benzoate), the tracerôs residence time, t, 

and its variance, s2
, were obtained by 

36
, 

Ű
᷿
Ð

᷿
          (2.1) 

 

 „
᷿

᷿
†         (2.2) 

 

Where the dimensionless time, q, is calculated from the ratio of the real time, t, to the 

residence time, t, defined as,  

 —            (2.3) 

 

The dimensionless residence time distribution function, E(q), calculated from pulse tracer 

experiments offers the direct comparison of the experimental results for different flow rate 

conditions
 36

, 

 Ὁ—
᷿

         (2.4) 

 

The ratio of convection to molecular diffusion, the Bodenstein number (Bo)
 36

, 
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 ὄέ
꜠

          (2.5) 

 

yields principle understanding of the dominant forces that govern hydrocarbon, seawater, and 

dispersant phase behavior in multiphase microfluidics. Here, ꜠  is the molecular diffusivity, u is 

the fluid velocity, and dE is the effective microchannel diameter. Principle understanding of 

convective forces to axial dispersion is also available when considering the vessel dispersion 

number, D*/uL, where D*  is the dispersion coefficient and L the microchannel length. When 

(D*/uL) < 0.01 in single-phase flow, the system emulates plug flow, and 
36

, 

 Ὁ—
ϳz
Ὡὼὴ

ϳz
       (2.6) 

 

And, 

 „
ᶻ

          (2.7) 

 

When (D*/uL) > 0.01, the system is open and far from plug flow, which gives 
36

, 

  

 Ὁ—
ϳz

Ὡὼὴ
ϳz

      (2.8) 

 

And, 

 „
ᶻ

ψ
ᶻ

         (2.9) 

 

The maximum peak heights of either E(q) curves yield estimations of D* , and hence Bo is 

estimated for known L/dE ratios of 10
3
 by combining 

36
,  

 ꜠  z          (2.10) 

 

into Equation (2.5). The subsequent Bo values provide useful knowledge on the role of molecular 

diffusion on mineral oil-seawater phase behavior in the presence of dispersants.  
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2.4. Results and discussion 

 

2.4.1. Mineral oil -seawater microfluidic slug-length distribution  

 

Mineral oil and seawater were delivered into the 6 ɛL microfluidic chip at identical flow 

rates ranging from 1 to 10 ɛL/min. No model dispersant was injected in the initial set of 

experiments. Depending on the flow rates of mineral oil and seawater, different slug length 

distributions of two phases were estimated, which is consistent with the work of others 
48, 49

. 

Figure 2.3A illustrates an example of the mineral oil slug length images obtained using a 

StereoZoom Microscope, and the mineral oil slug length number distribution calculated as 

Figure 2.3B. Here, samples of one hundred consecutive mineral oil slugs for each flow rate were 

chosen to estimate their distributions. As the slug length analysis shows, the flow rate has a 

strong influence on the slug length distribution. Increasing the flow rate decreases the slug 

lengths of both the mineral oil and the seawater phases, as depicted in Figures 2.3A and B. 

Larger flow rates result in larger rates of pressure buildup, and therefore more rapid insertion of 

one phase into the other. As a consequence, both phases segment into a greater number of slugs
49, 

50
. One observes that the mineral oil slugs are a fraction larger than the water slugs, which results 

from the hydrophilic microfluidic channel surface. There exists a thin water film between the 

mineral oil slugs and the microchannel wall. That is to say, the thin water film connects all the 

water slugs while all the mineral oil slugs are discrete. The corresponding film thickness, h, is 

estimated using Brethertonôs Law:
 51

 

 Ὤ πȢφχὨὅὥȾ          (2.11) 

 

where the Capillary number, Ca = mu/g, m is the viscosity of the liquid, and g is the interfacial 

tension of the liquid. In our system, the mean Capillary number is on the order of 10
-3
 (see Table 

2.3) and the water film thickness estimated by Equation (2.11) as 0.68 to 3.14 ɛm. The mean 
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Capillary number is below the critical value (10
-2
), so the shear stress alone is not sufficient to 

break-up the slugs. The slug length is determined by the flow rate of mineral oil and the seawater  

 

Figure 2.3. Characterization of mineral oil-seawater multiphase flow through a microfluidic 

device in the absence of dispersants. (A) Photographs of mineral oil slug lengths obtained using a 

StereoZoom Microscope. (B) Estimation of the mineral oil slug length number distribution at 

different injection rates. (C) Dimensionless characterization of the mean Capillary and the mean 

Reynolds numbers. 

Table 2.3. Experimental conditions and dimensionless quantity estimates. 

 (a) (b) (c) (d) 

Total flow rate, FT (ɛL/min) 2.00 4.00 10.00 20.00 

Mean velocity, u (×10
-2
 m/s) 0.188 0.376 0.940 1.88 

Remean 0.185 0.369 0.924 1.85 

Camean (×10
-3
) 0.548 1.10 2.74 5.48 

Wemean (×10
-4
) 0.113 0.452 2.83 11.3 

Ű (min) 3.00 1.50 0.60 0.30 

 

in our model system
52

. Plotting Camean as a function of Remean yields Figure 2.3C. The slope, 

Camean/Remean = m2
/(dErg), is estimated to be 3.0×10

-3
. Previously reported values estimated for 
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toluene dispersed in deionized water of 0.47 ×10
-4 

(for a T-shaped junction) and 0.63×10
-4
 (for a 

Y-shaped junction) 
48

 are indications of the characteristic difference of the seawater-mineral oil 

viscous forces. Increasing viscous forces increases the Camean/Remean ratio
48

.  

Table 2.3 further summarizes the experimental conditions achieved in the 6ɛL microfluidic 

chip and the corresponding dimensionless quantities. Reynolds number ranges from 0.19 to 1.8, 

and thus laminar was established for residence times ranging from 0.30 to 3.0 min. For mineral 

oil and seawater flow rates each of 5.00 ɛL/min (total flow rate of 10.00 ɛL/min), the equivalent 

mean residence time is 0.60 min and the mean mineral oil slug length approximately 900 mm. 

The Weber number, We = dEru
2
/g, where r is the density of the liquid, ranges from 0.11 to 11.3 

(×10
-4
).  Therefore, the liquid-liquid surface tension dominates over the inertial forces, and again 

slug flow is expected
48, 53

. Spilled crude oil on the ocean surface forms a thin film influenced by 

interfacial tension, viscous, and gravitational forces
54

. In stormy seas, the near-surface turbulence 

of waves generates oil droplets through natural dispersion
55

, and Weôs > 10 predicts natural 

droplet break-ups
53, 56

. When one considers calm seas, the thin crude oil film velocity on the 

ocean surface is approximately 3.5% of wind speeds
57

 ranging from 1.0 to 9.0 m/s
58

.  Suspended 

crude oil droplets can exhibit broad size distributions in thin films (e.g., 1 to 1000 mm)
55

.  

Estimations of the corresponding Weôs based on previously reported data gives maximum and 

minimum values of 1.9x10
-3
 and 2.4x10

-5
 for droplet sizes of 1 mm.  Maximum and minimum We 

values of 1.9 and 2.4x10
-2
 correspond to 1000 mm droplets.  As a consequence, interfacial forces 

govern, both our laboratory scale study and calm sea conditions, over inertial forces.  As we will 

soon learn, introducing model dispersants into the mineral oil-seawater multiphase flow has a 

profound impact on the stability of the phase behavior and on the molecular dispersion.  
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2.4.2. Influence of model dispersants on the slug length 

 

The influence of dispersant on the slug size distribution was evaluated in the next set of 

experiments.  Seawater, analogous to the basecase, was injected into the 6 ɛL microfluidic chip 

at a flow rate of 5 ɛL/min. Model dispersants were also injected each separately at flow rates 

ranging from 0.02 to 1.0 ɛL/min. The combined flow rate of the mineral oil and the dispersant 

was 5ɛL/min in each test. Microscope photographs of the mineral oil-seawater multiphase flows 

for different injection rates of Model Dispersant I are shown in Figure 2.4. Interestingly, one 

observes in the figure a transition in the stability as the flow rate of the model dispersant 

increased from 0.02 ɛL/min (Figure 2.4A) to 0.04 ɛL/min (Figure 2.4B) to 0.06 ɛL/min (Figure 

2.4C). For Model Dispersant I flow rates < 0.04 mL/min, uniform mineral oil slugs were 

observed. At flow rates > 0.04 mL/min, mineral oil slug lengths became stochastic. Increasing the 

flow rate to 0.20 mL/min dispersed mineral oil droplets in the continuous seawater phase, and 

thus the mineral oil-seawater multiphase flow took a form of bubbly flow as shown in Figures 

2.4D, 2.5A, and 2.5B for flow conditions. A stop flow technique was applied to estimate the 

static droplet diameters, ranging from 7 to 70 mm, for the bubbly flow regime (see Figure 2.5C) 

for dispersant injection rates of 0.30 mL/min. Increasing the injection rate to 1.0 mL/min further 

reduced the droplet diameters as shown in Figure 2.5D. The transition to bubbly flow, a 

significant discovery, is preliminary indication of a critical dispersant concentration necessary to 

achieve high interfacial surface areas. To facilitate better understanding of the transition, we 

define the dimensionless dispersant flow rate, QD, as, 

 ɡ
  

  
       (2.12) 

 

where the total flow rate, FT, is the sum of the mineral oil (FO), dispersant (FD), and seawater 

(FW) flow rates. 
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Figure 2.4. Microscope photographs of the mineral oil-seawater multiphase flow through a 

microfluidic device for different injection rates of the Model Dispersant I: (A) FD = 0.02 ɛL/min, 

(B) FD = 0.04 ɛL/min, (C) FD = 0.06 ɛL/min, and (D) FD = 0.20 ɛL/min (FW = 5 ɛL/min; FO + 

FD = 5 ɛL/min for all tests). 

 
 

Figure 2.5. Photographs of mineral oil-seawater phase separation (with Model Dispersant I) 

through a microfluidic device under flow, (A) FD = 0.30 ɛL/min and (B) FD = 1.0 ɛL/min, and 

static conditions, (C) FD = 0.30 ɛL/min and (D) FD = 1.0 ɛL/min, where FW = 5 ɛL/min and FO + 

FD = 5 ɛL/min for all tests. 

Estimation of the mean slug length (Lmean) for different QD values (Figure 2.6) elucidates the 

mass of dispersant needed to destabilize the mineral oil slugs. As can be seen in Figure 2.6, 

increasing QD values from 0 to approximately 0.003 has no influence on Lmean values for Model 
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Dispersant I. However, Lmean values for Model Dispersants I, II , and III  began to decrease for QD 

values of 0.003, 0.0015, and 0.001, respectively. By QD values of 0.010, Lmean of mineral oil 

droplets were 0.126 mm (I), 0.108 mm (II), and 0.064 mm (III) . The plateau values illustrated in 

Figure 2.6 reveal that the mineral oil slug are stable until the concentration of the model 

dispersants are greater than a critical concentration. The critical concentrations of Model 

Dispersant I, II, and III are observed for dispersant flow rates of 0.012, 0.02, and 0.04 mL/min, 

respectively. The corresponding dimensionless mass ratios of each model dispersant to the 

mineral oil are 7.7x10
-3
 (I), 4.1x10

-3
 (II), and 2.6x10

-3
 (III).   The resultant ratios undergird that 

increasing the kerosene mass fraction increases the critical mass ratio whereby emulsion 

formation is expected. 

 

Figure 2.6. Mean mineral oil slug length (Lmean) as a function of the dimensionless dispersant 

injection rate (ŪD×10
3
) measured by analyses of microscope images. The transition from stable, 

well-characterized slug flows to the bubbly microfluidic regime is illustrated for each Model 

Dispersant I, II, and III. 
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The mineral oil slugs remain stable prior to achieving the critical concentration of dispersant 

as the surface tension decreases and the dispersant molecules construct a monolayer at the liquid-

liquid interfaces. Dispersant molecules accumulate at the interface until the critical concentration 

is achieved, whereby the surface tension decreases to its minimum limit and the slugs start to 

break-up. As QD values increase beyond the critical values, the dispersant molecules need 

additional mineral oil-water interface to occupy, which results in the transformation of mineral 

oil slugs into dispersed mineral oil droplets (i.e., an emulsion). In marine environments, wave 

motions govern the phase behavior of crude oil slicks. Identifying the critical mass addition of 

dispersants that effectively break-up oil slicks into dispersed droplets is key to minimizing 

environmental risks and to maximizing the crude oil surface-to-volume ratio (i.e., maximizing 

the bacteria consumption rate) before crude oil slicks have enough time to reach coastal 

shorelines.  

2.4.3. RTDs of single- and multi-phase flows 

 

Experimental analysis of dispersion in multiphase microfluidics, which builds on the 

classical residence time distribution theory previously derived, offers additional insights on the 

mineral oil-seawater system. As a first step, the dispersion in single-phase seawater within the 

microfluidic device was investigated. A tracer molecule, 0.04 wt% sodium benzoate in seawater, 

was injected into the carrier seawater solvent. Figure 2.7 shows the absorbance of sodium 

benzoate in seawater at different concentrations. The maximum absorbance wavelength of 225 

nm was chosen to increase the signal-to-noise ratio, which improves the precision of the 

measurements especially at low absorbance. Flow rates of seawater single-phase flow of 2.00, 

4.00, 10.00 and 20.00 mL/min were studied. Estimations of the dimensionless residence time 

distribution function, E(q), by Equation (2.4) were made and the results reported in Figures 2.8A  
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Figure 2.7. UV-Vis absorbance of sodium benzoate in seawater. 

 

Figure 2.8. RTD measurements of mineral oil and seawater flows. (A) Absorbance as a function 

of time for seawater injections and (B) their corresponding E(ɗ) values as a function of 

dimensionless time (ɗ). (C) Absorbance as a function of time for mineral oil-seawater multiphase 

flows and (D) their corresponding E(ɗ) values as a function of dimensionless time (ɗ). 
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and B. The corresponding parameters were calculated using Equations (2.5) through (2.7) and 

(2.10), and they are reported in Table 2.4. As the flow rate increased from 2.00 to 20.00 mL/min, 

the mean residence time decreased from 8.35¤0.19 to 0.85¤0.003 min (see Table 2.4), and the 

peak width of the absorbance decreases (Figure 2.8A) while the peak width of E(q) curves 

increases (Figure 2.8B).  Furthermore, Table 2.4 confirms that increasing the flow rate increases 

the vessel dispersion number and Bo because differences between the centerline fluid velocity 

and the zero wall velocity (i.e., the no-slip boundary condition at the microchannel wall) are 

greater. 

Table 2.4. Comparison of dispersion for single-phase RTDs at different flow rates. 

Total Flow 

rates 

(ɛL/min) 

u 

 (Ĭ10
-2
 

m/s) 

Ű  

(min) 

ů
2 

(min
2
) 

ůɗ
2 

 

D*/(uL) 

 

D* 

(Ĭ10
-5 
m
2
/s)

 
Bo 

2.00 0.188 8.35¤0.19 3.56 0.0166 0.0083 0.88 400 

4.00 0.376 4.18¤0.05 1.68 0.0188 0.0094 2.00 800 

10.00 0.940 1.68¤0.006 0.48 0.0275 0.0132 6.97 1990 

20.00 1.880 0.85¤0.003 0.17 0.0387 0.0182 19.3 3980 

 

Dispersion of the tracer molecule in multiphase flow was next evaluated under the same flow 

rate conditions and using Equations (2.4), (2.5), and (2.8) through (2.10). Figures 2.8C and 2.8D 

illustrate the absorbance and the resulting E(q) curves for total flow rates of of 2.00, 4.00, 10.00 

and 20.00 mL/min.  As shown in Figure 2.8D and Table 2.5, (D*/uL) values are independent of 

the flow rate, which is not surprising in well-mixed segmented flow. Values of (D*/uL) ~0.003, 

significantly less than those reported in Table 4 for single-phase flow, confirm that segments of 

mineral oil dispersed in seawater confine the tracer molecule. The result is in agreement with 

previously reported observations for gas-liquid flows
46, 59

. Values of Bo ranging from 400 to 

4,000 in both the single- and multiphase flows confirms the convective flux to dominate the 

diffusive flux in the radial direction. Eliminating the diffusive and the convective communication 



 

27 

 

between segments in the axial direction, as we will soon see, creates an ideal microfluidic 

condition that can be exploited to identify when the addition of dispersants breaks up the slugs 

into dispersed droplets (i.e., an emulsion).  

Table 2.5. Comparison of dispersion for multi-phase RTDs at different flow rates. 

Total Flow 

rates 

(ɛL/min) 

u 

 (Ĭ10
-2
 m/s) 

Ű 

(min) 

ů
2 

(min
2
) 

ůɗ
2 

 

D*/(uL) 

 

D* 

(Ĭ10
-5 

m
2
/s)

 

Bo 

2.00 0.188 12.1¤0.2 1.69 0.0059 0.0030 0.31 420 

4.00 0.376 5.83¤0.09 0.71 0.0063 0.0032 0.66 850 

10.00 0.940 2.51¤0.04 0.21 0.0060 0.0030 1.57 2120 

20.00 1.880 1.22¤0.02 0.04 0.0062 0.0031 3.22 4240 

 

Analyses of the tracer moleculeôs absorbance in liquid-liquid mineral oil-seawater multiphase 

flow offer additional insight on the influence of the model dispersants. As shown in Figure 2.9A, 

the tracer molecule absorbance injected into the seawater carrier solvent (in the absence of any 

model dispersant) generates a histogram distribution with alternating absorbance from one 

immiscible phase to the other. Figures 2.9B, 2.9C, and 2.9D illustrate the destabilization of the 

multiphase segmented flow as QD values increase from 0.5x10
-3
 to 4x10

-3
 to 10x10

-3
. Not only 

does the maximum absorbance increase with increasing QD values but stochastic peaks outside 

the distribution function also appear as the droplets are dispersed. Re-plotting the E(q) curves by 

substituting data of Figures 2.9A, 2.9C, and 2.9D into Equation (2.4) yields Figure 2.10. The 

maximum of the dimensionless distribution function E(q) decreases as QD values increase from 0 

to 0.004 to 0.010, which signifies axial communication between the immiscible liquid-liquid 

segments.  Recall that axial dispersion was neither observed in Figures 2.8C and 2.8D nor in the 

results of Table 2.5. As the slugs break-up into dispersed droplets, via the addition of Model 

Dispersant I, axial dispersion is made possible. Table 2.6 further exemplifies the observation as 

the resulting calculated (D*/uL) and Bo values increase from 3.0x10
-3
 to 4.0x10

-3
 and from 2100  
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Figure 2.9. RTDs of mineral oil-seawater multi-phase flows with (A) no dispersant (Fw = FO = 5 

ɛL/min; FD = 0; ŪD (×10
3
) = 0), and for varying dimensionless injection rates of Model 

Dispersant I: (B) ŪD (×10
3
) = 0.5, (C) ŪD (×10

3
) = 4, and (D) ŪD (×10

3
) = 10. 

 

Figure 2.10. Dimensionless E(ɗ) curves of mineral oil-seawater multi-phase flow for different 

dimensionless dispersant injection rates. 
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Table 2.6. Comparison of dispersion for varying dimensionless dispersant concentrations. 

ŪD 
(Ĭ10

3
) 
Total Flow 

rates 

(ɛL/min) 

u 

 (Ĭ10
-2
 m/s) 

Ű 

(min) 

ůɗ
2 

 

D*/(uL) 

 

D* 

(Ĭ10
-5 
m
2
/s)

 
 ꜠

(Ĭ10
-10 

m
2
/s) 

Bo 

0 10.00 0.940 2.51¤0.04 0.0060 0.0030 1.57 6.68 2120 

4 10.00 0.940 2.17¤0.03 0.0071 0.0035 1.83 5.73 2480 

10 10.00 0.940 2.04¤0.03 0.0080 0.0040 2.09 5.02 2830 

 

  

to 2800 with increasing QD values in the range from 0 to 0.010. Our general observations support 

that changes in the Bodenstein number measured in immiscible liquid-liquid segmented flows 

indicate the dispersant-induced transition from stable slug flow to the bubbly flow regime. 

Understanding the criteria, as previously stated, are key to minimizing environmental risks and 

to maximizing the crude oil surface-to-volume ratio before crude oil slicks have enough time to 

reach coastal shorelines.  

2.5. Conclusions  

 

Chemical dispersants reduce the mass of crude oil that contaminates coastal shorelines during 

oil spill catastrophe, which protects the wetlands and the beaches from the spreading oil. 

Quantifying the mass of dispersants needed is crucial to minimizing the mass released into the 

environment. Microfluidic analysis of mineral oil-seawater multiphase flows elucidates that a 

critical concentration of dispersant exists to transform stable slug flows into the bubbly flow 

regime. Our analysis of the mean slug size for different dimensionless model dispersant injection 

rates yields the mass ratio of dispersant to mineral oil that generates emulsions. The 

dimensionless mass ratio values are key to scaling up from the laboratory to full-scale systems 

that operate in calm seas (i.e., We < 1). Additional knowledge on the dimensionless mass ratios 

for real crude oil systems could potentially identify the critical mass of dispersant needed during 

emergency oil spill remediation. 
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Measurements of the residence time distributions of seawater single- and mineral oil-

seawater multi-phase flows, laden with dispersants, also provide insight on the influence of 

model dispersants. Increasing the dimensionless dispersant injection rate was observed to 

increase convective dispersion, which was confirmed by estimations of the vessel dispersion 

number, the molecular diffusivity, and the Bodenstein number. The observations undergird that 

microfluidics are useful laboratory techniques to identify the transition to bubbly flow where 

bacteria consumption rates could potentially be enhanced while minimizing the dispersant mass 

introduced into calm-sea marine environments. Classical reactor design analogies are 

omnipresent towards the discovery of global knowledge that mitigates the severity of 

environmental disasters. 
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CHAPTER 3 

MICROFLUIDIC INVESTIGATION OF THE DEPOSITION  

OF ASPHALTENES IN POROUS MEDIA 

(Cover article in Lab Chip. 2014, 14, 2014-2022) 

 

Abstract 

The deposition of asphaltenes in porous media, an important problem in science and 

macromolecular engineering, was for the first time investigated in a transparent packed-bed 

microreactor (ɛPBR) with online analytics to generate high-throughput information. Residence 

time distributions of the ɛPBR before and after loading with ~29 ɛm quartz particles were 

measured using inline UV-Vis spectroscopy. Stable packings of quartz particles with porosity of 

~40% and permeability of ~500 mD were obtained. The presence of the packing materials 

reduced dispersion under the same velocity via estimation of dispersion coefficients and the 

Bodenstein number. Reynolds number was observed to influence the asphaltene deposition 

mechanism. For larger Reynolds numbers, mechanical entrapment likely resulted in significant 

pressure drops for less pore volumes injected and less mass of asphaltenes being retained under 

the same maximum dimensionless pressure drop. The innovation of packed-bed microfluidics for 

investigations on asphaltene deposition mechanisms could contribute to society by bridging 

macromolecular science with microsystems. 
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3.1. Introduction 

Miniaturization has broadly advanced the physical and chemical rate principles of organic 

chemistry, in large part, by providing high-throughput knowledge that bridges molecular level 

and laboratory-scale understandings. The ultimate goal of integrating online analytical analyses 

with microscale devices that yield directly scalable knowledge to real-world scenarios, albeit 

maturing, remains a vital limitation of the field. High molecular weight aromatics, such as 

asphaltenes, are difficult to characterise because of the complexity of their chemistry. 

Deciphering the science of such macromolecular aromatics impacts the sustainability of 

upstream conventional and unconventional energy production, chemicals manufacture, 

transportation systems, and the residential and commercial building industries. Tremendous 

potential exists for lab-on-a-chip devices to discover science that directly scales-up to make 

societal contributions. 

Asphaltenes are macromolecular aromatics, and similar to amino acid derived 

macromolecules (e.g., proteins, DNA, etc.) they are challenging to characterise due to their 

thermodynamic and functional complexities. They are the most complex component of crude oil. 

As a result, asphaltenes are commonly defined as the toluene-soluble, light n-alkanes-insoluble 

component of a specific crude oil or other carbonaceous materials such as bitumen and coal
1,2

. 

They are the heaviest and most polarisable components. Asphaltenes obtained from crude oil 

using n-heptane as a precipitant are usually dark-coloured, fragile solids with C : H ratios of ~1 : 

1.2 and specific gravity of ~1.2. They consist primarily of aromatic polycyclic clusters and 

heteroatoms (e.g., N, S, O), as well as trace amount of metals such as V, Fe, and Ni. Similarities 

exist between asphaltenes and some lower molecular weight fine chemicals and pharmaceuticals. 

Merit exists for the green hydrothermal cracking of asphaltenes into fine chemical and 
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pharmaceutical precursors. Even after decades of academic investigations, understandings of 

asphaltenes structures
2ï11

, behaviours at heterogeneous interfaces,
10,12ï15

 aggregation and 

solubility,
4,11,16ï26

 precipitation and depositions,
26ï39

 dissolutions,
40ï42

 and the characterization of 

asphaltenes bearing media,
37,43ï45

 all remain essential topics of research in this important area of 

science. 

Many factors, such as changes in the temperature, pressure, composition, and shear rate 

cause asphaltenes to precipitate and deposit on heterogeneous surfaces.
1
 In upstream petroleum 

and natural gas production, instabilities of asphaltenes within subterranean porous media creates 

the potential to adversely affect production rates.
46ï48

 Two recognized models describe 

asphaltene deposition in porous media: adsorption and mechanical entrapment.
47

 Adsorption is 

reversible with asphaltenes desorbing from siliceous and/or carbonate surfaces as their bulk 

concentrations decrease. Mechanical entrapment (e.g., hydrodynamic bridging) is a physical 

blocking process of pore throats by precipitated asphaltene particles. Remediation techniques 

have been studied in order to understand how to mitigate the outcomes of either mechanism on 

production rates.
49

 Conventional macroscale laboratory techniques, however, mask the intrinsic 

mechanisms and their relationship to asphaltene science. 

Microfluidic systems allow for the precise control of conditions to study chemistry.
50ï57

 The 

high surface-to-volume ratios attainable in microscale devices and their reduced characteristic 

length scales within heterogeneous systems minimize the heat and mass transfer resistances, 

which suggests that microfluidic systems offer advantages in studying intrinsic flow and reaction 

behaviour relative to conventional macroscopic systems.
51

 The nature of porous media itself 

represents highly parallelized nanofluidic and microfluidic chemical reactors. Macroscale 

systems are commonly used to capture the science of chemical reactions in porous media, yet 
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their non-invasive design overlooks key molecular and microscale, mechanistic information. 

Engineering packed-bed microreactors potentially creates a way to study chemical reactions in 

situ when unsteady-state time scales are magnitudes less than geological equilibrium conditions. 

The precipitation of asphaltenes in continuous flow, microchemical reactors,
58ï61

 in our example, 

offers a novel approach to overcome the transport limitations while discovering the scalable 

nature of the kinetic parameters that characterise their deposition mechanisms in porous media. 

In the present work, microfluidic devices were designed and fabricated in silicon and Pyrex, 

for the first time, to develop high-throughput understanding of the deposition of asphaltenes in 

porous media. Our quartz packed-bed microreactor with online analyses provides a ubiquitous 

platform to study the deposition of asphaltenes in micro-scale tortuous flows, which bridges the 

knowledge gap between molecular level events and macro-scale reservoir productions. The 

porosity loss and permeability impairment of the porous media before and after damages were 

also studied. The results of asphaltene deposition demonstrate packed-bed microreactors as 

promising microfluidic tools that could yield mechanistic understanding of high molecular 

weight aromatics for a broad cross-section of science. 

3.2. Experimental 

3.2.1. Chemicals 

Toluene and acetone (HPLC grade) were obtained from EMD (Millipore, USA). Ethanol 

(absolute) and n-heptane (HPLC grade) were purchased from Alfa Aesar (Ward Hill, MA, USA). 

Quartz sand (30ï40 mesh) was acquired from VWR International (West Chester, PA, USA). All 

liquids were used without further purification. 
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3.2.2. Device fabrication, layout, and analytics 

Empty microreactors (EɛPBR) were fabricated from 1 mm polished single-crystal silicon 

wafers and capped with 1.1 mm Pyrex wafers. The fabrication process primarily included 

photolithography (spin-coating, exposure, and development), deep reactive ion etching (DRIE), 

cleaning, anodically bonding of silicon wafers to Pyrex, and dicing into chips, as shown in 

Figure S3.1a of the ESI. Figure 3.1a illustrates a fabricated EɛPBR with dimensions of 

5.0×1.8×0.21 cm. Here, the microchannel is 300 ɛm in depth and 9 mm in width. Near the outlet, 

30 rows of cylindrical pillars of 20 ɛm in diameter were etched 20 ɛm apart, as depicted in the 

SEM micrograph of Figure 3.1b. Quartz particle sizes were designed such that the largest particle 

size was less than one fourth of the minimum microchannel depth of 300 ɛm to avoid aspect 

ratios that lead to bridging,
61

 i.e., less than 75 ɛm. The starting material, 30ï40 mesh quartz 

sands, was grinded by mortar and pestle in the presence of water. Particles were separated and 

collected using 635 mesh and 500 mesh sieves. The remaining ultrafine particles were removed 

by ultrasonic bath treatments. Microscope photographs, e.g., Figure 3.1c. acquired using an 

optical microscope, were used to calculate the quartz particle size number distribution, as shown 

in Figure 3.1d. From Figure 3.1d, mean particle sizes of 29 ɛm were estimated ranging from 17ï

38 ɛm. The packed bed was prepared by injecting the ~29 ɛm quartz particles dispersed in 

absolute ethanol into the EɛPBR using a 5 mL syringe. Figure 3.1e shows the packaged system 

loaded with quartz particles, which creates a native packed-bed microreactor (ɛPBR). Figure 

S3.1b further illustrates the underside fluidic connections the packaged system. 
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Figure 3.1. (a) Photograph of the EɛPBR with dimensions of 5.0Ĭ1.8Ĭ0.21 cm. (b) SEM 

micrographs of 20 ɛm pillars. (c) Microscope photograph and (d) estimated size distribution of 

the quartz particles. (e) Photograph of the packaged system with water circulation connections. (f) 

Schematic flow diagram of the experimental setup used to study the deposition of asphaltenes in 

the ɛPBR. 

 

The experimental setup used to study asphaltene depositions is shown schematically in 

Figure 3.1f. Two high-pressure pumps (Teledyne ISCO, Lincoln, NE, USA) were used to inject 

4 g/L asphaltene in toluene (40 vol%) and n-heptane (60 vol%) at constant flow rates. Inline 

check valves (IDEX Health & Science, Oak Harbor, WA, USA) prevented back flows of the 
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liquids. Two pressure-reducing valves (IDEX Health & Science, Oak Harbor, WA, USA) were 

installed inline as relief devices. Asphaltenes dissolved in toluene and n-heptane were mixed in a 

stainless steel T-union within an ultrasonic bath (VWR International, West Chester, PA, USA) to 

ensure no accumulations upstream of the ɛPBR. Inline pressure transducers (500 psi, Honeywell 

Sensing & Control, Golden Valley, MN, USA), connected to the entrance and exit of the 

microreactor, enabled online analyses of pressure drops. The packaged ɛPBR interconnected to a 

heated circulating bath (Honeywell Sensing & Control, Golden Valley, MN, USA) maintained 

theɛPBR temperature on-chip of 70.0 °C. A 5 psi back-pressure regulator (IDEX Health & 

Science, Oak Harbor, WA, USA) maintained constant pressure at the ɛPBR outlet, and it 

established fluidic resistance in order to minimize the possibility of microchanneling within the 

ɛPBR. 

3.2.3. Measurements of residence time distributions (RTDs) 

Residence time distributions were measured using a continuous inline UV-Vis spectroscopy 

system, as shown in Figure 3.2. As shown in Figure 3.2a, a syringe pump (PHD 2000, Harvard 

Apparatus, Holliston, MA, USA) and 5 mL SGE glass syringes were used to inject n-heptane 

(carrier solvent) at flow rates of 10.00, 20.00, 40.00, 80.00, and 160.0 ɛL/min. A microscale 

injector (Figure 3.2b, IDEX Health & Science, Oak Harbor, WA, USA) with a 1.0 ɛL sample 

loop of acetone (20 vol% in n-heptane) delivered the tracer inline and upstream of the ɛPBR. 

Axial dispersion of the tracer was measured using inline UV-Vis spectroscopy (Figure 3.2c, 

Ocean Optics, Dunedin, FL, USA) at the outlet of the ɛPBR. The peak absorbance wavelength of 

277 nm (Figure 3.2d) was chosen to maximize the signal-to-noise ratio, which improved the 

resolution of dilute tracer concentration measurements. The microscale injector, packaged ɛPBR, 

and UV-Vis spectroscopy were interconnected by 0.005" tubing in order to reduce the dead 
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volume. The light source was allowed to warm-up for at least 20 min before performing RTD 

experiments.  

 

 

 
 

 

Figure 3.2 (a) Schematic diagram of continuous inline UV-Vis spectroscopy used to obtain 

RTD measurements. (b) The microscale injector with a 1.0 ɛL sample loop (8 cm of 0.005ò 

I.D. red tubing), and (c) flow cell integrated with a 400 ɛm I.D. quartz capillary. (d) 

Measurements of the UV-Vis absorbance (at 277 nm) of acetone in n-heptane at different 

concentrations. 

 

3.2.4. Preparation of asphaltenes 

Asphaltenes used in the present study were then-heptane insoluble fraction of a Wyoming 

crude oil deposit provided by Nalco Energy Services. The insoluble fraction was then dissolved 

in toluene. Passing the solution through a ceramic filter fitted with Whatman no. 1 filter paper 

separated the insoluble organic and inorganic material. Next, n-heptane was combined with the 

filtrate, the insoluble material collected, and the procedure repeated until no asphaltenes 
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precipitating out of the solution. The filtered asphaltene precipitates were then dried at 60.0 °C 

for 24 h. The dried asphaltenes (dark-coloured, friable solids) were used in the present work. 

3.3. Theoretical 

3.3.1. Axial dispersion model 

Residence time distribution theory and dispersion models in laminar flow microreactors have 

been previously described.
62

 Under openïopen boundary conditions a molecule can pass the 

boundary several times
63

 and the system deviates from plug flow. The dimensionless residence 

time distribution function is given as,
64,65 

 Ὁ—
ϳz

Ὡὼὴ
ϳz

      (3.1) 

 

where D* is the dispersion coefficient, u the superficial velocity, and L the axial length of 

the microreactor. The maximum peak heights of E(ɗ) curves yield estimations of D* , and 

hence the ratio of convection to diffusion (i.e., the Bodenstein number, Bo =udE/ ꜠) is 

estimated for known L/dE ratios of magnitude 10
2
 by combining into,

64 

 ꜠  z          (3.2) 

Here, dE is the effective cross-sectional diameter of the microchannel, and  ꜠is the molecular 

diffusivity. Equation (3.1) and (3.2) characterise the extents of axial dispersion and molecular 

diffusion within ɛPBRs.  

3.3.2. Porosity, permeability, and skin factor of porous media 

In packed-beds, important parameters that characterize the porous media include the length 

of the packed-bed, L, the mean particle size, dP, and the interstitial fluid velocity, ui, 

 ό όȾɲ           (3.3) 

 

where u is the superficial velocity, and ɲ is the porosity of the porous media (i.e., the void 

fraction).
66 
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Permeability describes how well a given liquid flows through a porous media, and it is 

controlled by pore sizes and their interconnectivity. The one-dimensional empirical equation 

discovered by Darcy continues to be widely adopted by engineers and scientists in their 

descriptions of porous media.
67

 Permeability can be estimated by Darcy's law,
68 

 ὗ           (3.4) 

 

which describes the relationship between the flow rate in porous media, Q (e.g., m
3
/s or 

barrels per day, bpd), the cross-sectional area normal to the axial direction of flow, A (m
2
), 

the permeability, ə (m
2
 or mD, and 1 mD = 9.869233×10

ī16
m

2
), the dynamic viscosity of 

the fluid, ɛ (Pa s or Cp), and the pressure drop across the packed-bed, ȹP (Pa or Psi). 

In porous media, the presence of solid particles themselves causes the diffusion paths 

of molecules to deviate from their original trajectories. Tortuosity should be considered to 

accurately estimate the role of porosity on diffusion, which is defined by,
69,70 

כ             (3.5) 

 

where Le and Ls are the actual length and the straight length of the molecule flow paths. 

Unlike ,ɲ כ values are challenging to directly measure. An empirical tortuosityïporosity 

relationship for unconsolidated sands has previously been described by,
70 

כ  ὃɲ          (3.6) 

 

where the parameter values in equation (3.6) are A=1, n= 1 and m= 2.14. 

The hydraulic radius between the sand grains can be estimated by,
71

 

 ὶ
ᶮ

ᶮ
          (3.7) 

 

where dP is the mean particle size of the sand grains. 

The dimensionless van EverdingenïHurst skin factor, s, commonly used to describe the 

extent of subterranean wellbore damage, is defined as,
71
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 ί Ўὖ
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         (3.8) 

where h is the thickness of production zone. 

Reynolds number in a packed-bed, ReP, is defined as,
72

 

 ὙὩ
ᶮ

          (3.9) 

 

where ɟ is the density of the solvent. Fully laminar conditions exist for ReP <10, while fully 

turbulent from >2000. Equation (3.3) through (3.9) characterise the extent asphaltene deposition 

within ɛPBRs has on fluid flow through the porous media. 

3.4. Results and discussion 

3.4.1. Porosity, permeability, and tortuosity of the ɛPBR 

Characterisations of an EɛPBR free of quartz particles were first performed to establish the 

dimensionless constraints that govern the microfluidic system. Table 3.1 summarizes the 

experimental conditions achieved in the EɛPBR and the corresponding dimensionless quantity 

estimates based on 40 vol% toluene and 60 vol% n-heptane solvent injections. In empty reactors 

(Table 3.1a), Reynolds number ranged from 0.25 to 4.1, and as a consequence laminar flow was 

established for residence times ranging from 0.28 to 4.50 min. Viscosities and densities of 

toluene andn-heptane at 70 °C were obtained from the work of others.
73ï76

 Capillary numbers 

(Ca =ɛu/ɔ, where ɔ is the interfacial tension of the liquid) were estimated on the order of 10
ī5

, 

while the Weber number (We =dEɟu
2
/ɔ) ranged from 0.02 to 6.09×10

ī5
. Therefore, surface 

tension dominated over the inertial forces within the EɛPBR. The ratio of Ca/Re =ɛ
2
/(dEɟɔ) was 

estimated to be 0.37×10
ī5

 (see Figure S3.2), which is much smaller than a previously reported 

value of mineral oilïseawater systems
62

 due to the small viscosity and larger effective 

microchannel diameter. Estimation of the same quantities of ɛPBRs required first understanding 

the porosity of the porous media. 
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A ɛPBR was characterised in order to establish the dimensionless constraints that govern the 

microfluidic systems via RTD measurements. Figure 3.3 and S3.3 show the dimensionless RTDs 

of the EɛPBR and the ɛPBR. As the flow rates through the EɛPBR increased from 10.00 to 

40.00 ɛL/min, the mean residence times decreased from 7.97 ± 0.05 to 2.02 ± 0.02 min, and 

from 5.35±0.03 to 1.35±0.02 min for the ɛPBR (see Table S3.1). The variance ů
2
 decreased from 

2.13 to 0.17 for the EɛPBR, and it decreased from 1.51 to 0.16 for the ɛPBR (see Table S3.2). 

The magnitudes of variances are indications of the ñspreadò of the distributions. Figure S3.3a 

confirmed the shrinkage. The mean volume obtained from RTD measurements was 80.2 ± 0.6 

ɛL for the EɛPBR and 53.8 Ñ 0.3 ɛL for the ɛPBR, as reported in Table 3.2 for ñɛPBR 1ò. The 

difference between the two, 26.4 ɛL, corresponds to the volume occupied by quartz particles.  

 

Table 3.1. Experimental conditions and dimensionless quantity estimates for EɛPBR and ɛPBR 

  (I) (II) (III) (IV) (V) (VI) 

 

(a) 

EɛPBR 

Total flow rate, FT (ɛL/min) - 10.00 20.00 40.00 80.00 160.0 

Mean velocity, u (x10
-4
 m/s) - 0.62 1.23 2.46 4.92 9.84 

Re - 0.25 0.51 1.02 2.04 4.08 

Ca (x10
-5
) - 0.09 0.19 0.38 0.76 1.52 

We (x10
-5
) - 0.02 0.09 0.38 1.52 6.09 

† (min) - 4.50 2.25 1.13 0.56 0.28 

 

(b) 

ɛPBR 

Total flow rate, FT (ɛL/min) 8.00 10.00 20.00 40.00 80.00 160.0 

Interstitial velocity, ui (x10
-4
 

m/s) 

1.23 1.54 3.09 6.17 12.3 24.7 

ReP (x10
-2
) 0.55 0.69 1.38 2.76 5.52 11.0 

ʐ (min) 2.25 1.80 0.90 0.45 0.23 0.11 

 

 

 

The resulting packing efficiency and the porosity of the ɛPBR were 58.7% and 41.3%, 

respectively. The corresponding Reynolds number calculated using equation (3.9) is reported in 

Table 3.1b. As is evident in Table 3.1, the interstitial velocity within the ɛPBR was much larger 

than the mean velocity in the EɛPBR for the same volumetric flow rate. Reynolds number in the 
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ɛPBR ranged from 0.55 to 11.0×10
ī2

 (i.e., <10), and thus laminar flows were confirmed for 

residence times ranging from 0.11 to 2.25 min. 

 

 

 

 

Figure 3.3. RTD measurements of the EɛPBR and the ɛPBR. E(ɗ) values as a function of 

dimensionless time (ɗ) for (a) the EɛPBR and (b) the ɛPBR. The volumetric flow rates ranged 

from 10.00 to 160.0 ɛL/min. 

 

The extent of dispersion was evaluated in both the EɛPBR and the ɛPBR. Tracer experiments 

in n-heptane single-phase flows report the dimensionless RTDs of Figure S3.3b, which compares 
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E(ɗ) values as a function of dimensionless time (ɗ) for both microreactors given the same 

velocity of 1.23 ×10
ī4

 m/s. The maximum peak heights of 3.55 (for the ɛPBR) and 2.73 (for the 

EɛPBR) yield estimations of (D*/uL) using equation (3.1). As shown in Table S3.2, (D*/uL) is 

1.24 ×10
ī2

 within the EɛPBR and 7.5Ĭ10
ī3

 within the ɛPBR for a velocity of 1.23×10
ī4

 m/s. As 

a consequence, the packing reduced axial dispersion. From Figure 3.3a and b, one observes the 

maximum peak height decreased with increasing volumetric flow rate for both the EɛPBR and 

the ɛPBR. The corresponding values of (D*/uL) are reported in Table S3.2. From equation (3.2), 

values of  ꜠were calculated to be 0.85×10
ī8

 m
2
/s (for the EɛPBR) and 0.32Ĭ10

ī8
 m

2
/s (for the 

ɛPBR), which yielded Bo values. Values of Bo, ranged from 10 to 10
3
 in both the EɛPBR and 

the ɛPBR, which confirms that convective forces dominated over diffusive forces. One observes 

in Figure 3.3a and b that the maximum peaks shifted left for both the EɛPBR and the ɛPBR as 

the flow rates increased. Some degree of back-mixing, by dispersion, was likely present within 

the microreactors.
64,77

 

To confirm the reproducibility of the packing efficiency, four ɛPBR were prepared 

and the porosities determined by estimations of their RTDs (ɲRTD). Values of ɲ RTD, 

ranging from 39.1 to 41.3%, were estimated and reported in Table 3.2. Quartz masses 

within each ɛPBR were also measured, and the corresponding porosity (ɲmass) estimated 

from 38.3 to 40.3%. Using equation (3.4) and (3.6), permeability and tortuosity were also 

estimated to range from 501ï575 mD and 1.68ï1.73, respectively. The resultant 

diffusivity within ɛPBRs (i.e., 0.32×10
ī8

 m
2
/s) is less than that within the EɛPBR (i.e., 

0.85×10
ī8

 m
2
/s), yet of the same order of magnitude. As shown in Table 3.2, the 

hydraulic radii calculated from equation (3.7) were ~3.2 ɛm. The preparation of ɛPBRs 

with quartz particles was highly reproducible. 
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Table 3.2. Porosity, permeability and tortuosity of the packed quartz particles 
 

Reactor V 

 (ɛL) 
ᶮ  

(%) 

m 

(mg) 
ᶮ  

(%) 

‖ 
(mD) 

 rH כ

(ɛm) 

EɛPBR 80.2Ñ0.6 - 0 - - 1 - 

ɛPBR 1 53.8Ñ0.3 41.3 71.2 40.3 575 1.68 3.37 

ɛPBR 2 52.8Ñ0.4 39.1 73.6 38.3 501 1.73 3.11 

ɛPBR 3 53.5Ñ0.4 40.6 71.7 39.9 557 1.69 3.31 

ɛPBR 4 53.1Ñ0.2 39.7 72.4 39.2 524 1.71 3.23 
 

 

3.4.2. The solubility of the asphaltenes and their deposition in ɛPBRs 

As a next step in understanding asphaltene deposition, their solubility in n-heptane was 

measured using inline UV-Vis spectroscopy. The solubility of asphaltenes in n-heptane (0 to 90 

vol%) in toluene was investigated. Mixtures of n-heptane and 4 g/L asphaltenes in toluene at 

varying ratios were stirred and maintained for 24 h at 70.0 °C before filtration using Whatman no. 

3 filter paper. The absorbance of asphaltenes in the filtrates was measured using UV-Vis 

spectroscopy (at 286 nm) and the results shown in Figure 3.4 (black squares). 

 

Figure 3.4. UV-Vis absorbance of asphaltenes at 286 nm in the filtrates, and the corresponding 

precipitated weight percent of asphaltenes (wt%) for different n-heptane volume fractions 

(vol%). 

 



 

51 

 

Contaminated filter papers were dried and the mass measured. As seen in Figure 3.4, the 

precipitated wt% corresponds to different n-heptane volume fractions. The absorbance of 

asphaltenes decreased from 1.23 to 5.0×10
ī3

 as the volume fraction of n-heptane increased from 

0 to 90 vol%. The precipitated asphaltenes were 93.8 wt% for an n-heptane volume fraction of 

60 vol% at 70.0 °C. The relationship between the anticipated solubility of the asphaltenes for 

different volume fractions was therefore established, which enabled the design of experiments 

for asphaltene depositions in ɛPBRs. 

Depositions of the asphaltenes within ɛPBRs (i.e., damaged ɛPBRs, denoted by DɛPBRs) 

were next studied using microscopy. The influence of Reynolds number (ReP) was investigated 

in the next set of experiments for constant temperature. Asphaltenes dissolved in toluene 

(concentration of 4 g/L) and n-heptane were delivered into the ɛPBR at an n-heptane 

concentration of 60 vol% for varying total flow rates from 7.50 to 40.00 ɛL/min and ReP ranging 

from 0.52 to 2.76×10
ī2

. Figure 3.5a shows an example photograph of the deposition of 

asphatlenes in the DɛPBR for different pore volumes (t/ŰP) obtained by CCD camera. Values of 

ReP = 1.38×10
ī2

 and the initial porosity of 40.6% within the ɛPBR were estimated. As seen in 

Figure 3.5a, no obvious channelling was observed up to 77.0 pore volumes, as the colour of the 

DɛPBR changed uniformly. Uniform deposition of asphaltenes was observed under these 

conditions and before plugging. 

Analyses of fluidic resistances and ɛPBR-characterizations further revealed the deposition of 

the asphaltenes within DɛPBRs. Figure S3.4 shows the influence of the flow rate on the pressure 

drop as a function of time, and Figure 3.5b illustrates the corresponding dimensionless pressure 

drop as a function of the pore volumes of 4 g/L asphaltenes in toluene injected. One observes in 

Figure 3.5b that Reynolds number influenced the number of pore volumes necessary to obtain 
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dimensionless pressure drop values of 225. The DɛPBRs plugged in less pore volumes injected 

as the ratio of the inertial-to-viscous forces increased. Interestingly, Table 3.3 shows that as ReP 

decreased from 2.76×10
ī2

 to 0.52 ×10
ī2

 the mass of asphaltenes deposited increased from 1.1 to 

2.1 mg. The corresponding damaged porosities were estimated to range from 0.949ï0.902 of the 

original. The porosity of the DɛPBR was calculated from the mass of deposited asphaltenes, 

which was measured by closing the mass balance (i.e., the difference between the mass flow rate 

of asphaltenes in and out of each DɛPBR). The mass of asphaltenes in the waste collector and 

tubing were also measured by flushing with toluene. Reynolds number clearly plays an important 

role on the mechanism of asphaltene deposition within ɛPBRs. 

 

 

Figure 3.5. (a) Photographs of the deposition of asphaltenes in the DɛPBRs obtained using a 

CCD camera for different pore volumes. (b) Influence of Reynolds number on the dimensionless 

pressure drop as a function of pore volumes of 4 g/L asphaltenes in toluene injected. 
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Table 3.3. Influence of Reynolds number on ɛPBR impairments that generated DɛPBR 

Test Pore  

volumes 

ReP 

(x10-2) 
ᶮ  ‖  

(mD) 

mtotal 

 (mg) 

mwaste 

 (mg) 

mdeposited 

(mg) 

ᶮ

ᶮ
 

‖

‖
 

s 

(x103) 

Ўὖ

Ўὖ
 

1 68 2.76 39.7Ñ0.59 520Ñ4.5 4.9 3.8Ñ0.14 1.1 0.949 0.005 3.46 225 

2 68 1.38 41.7Ñ0.46 580Ñ3.7 5.1 4.1Ñ0.15 1.0 0.956 0.004 4.19 134 

3 68 0.69 40.7Ñ0.32 556Ñ2.9 5.0 4.6Ñ0.29 0.4 0.982 0.020 0.85 13 

4 68 0.52 40.4Ñ0.73 557Ñ6.6 5.0 4.8Ñ0.09 0.2 0.991 0.050 0.33 3.7 

5 77 1.38 40.6Ñ0.98 560Ñ10.2 5.5 4.1Ñ0.20 1.4 0.936 0.002 6.86 225 

6 77 0.69 40.5Ñ0.55 556Ñ4.9 5.5 4.9Ñ0.19 0.6 0.973 0.007 2.46 37 

7 77 0.52 39.9Ñ0.53 529Ñ5.3 5.4 5.2Ñ0.17 0.2 0.991 0.048 0.35 3.9 

8 96 0.69 40.3Ñ0.56 550Ñ4.7 7.0 5.3Ñ0.32 1.7 0.922 0.001 12.7 225 

9 96 0.52 41.1Ñ0.40 570Ñ3.2 7.1 6.8Ñ0.19 0.3 0.986 0.045 0.37 4.2 

10 115 0.52 40.5Ñ0.31 550Ñ4.2 8.4 7.1Ñ0.39 1.3 0.941 0.012 3.21 15.3 

11 133 0.52 39.7Ñ0.66 524Ñ6.3 9.5 7.4Ñ0.35 2.1 0.902 0.001 17.2 225 

 

3.4.3. The deposition mechanisms and dispersion within DɛPBRs 

The mechanism of the deposition process and its impact on permeability impairment are 

evident upon further evaluation of their relationships to Reynolds number. Statistically, a larger 

number of asphaltene particles passed through pore throat entrances along stream lines for a 

given number of pore volumes at larger ReP compared to smaller ReP, which ultimately lead to 

hydrodynamic bridging.
78

 At smaller ReP, precipitated asphaltenes likely penetrated further into 

DɛPBRs and uniformly, resulting in gradual dimensionless pressure drop increases. The porosity 

loss (ɲ damage/ iɲnitial) of Table 3.3 was more severe at smaller ReP under the same dimensionless 

pressure drop of 225. 

Table 3.3 also reports the permeability impairment (ədamage/əinitial) ranging from 0.001 to 

0.058, and the dimensionless skin factor of 0.33 ×10
3
 to 12.7 ×10

3
 calculated by equation (3.8). 

The viscosity of the mixture at 70.0 °C was obtained from the work of others.
73,74

 Fluctuations of 

the curves of Figure 3.5b at small ReP of 0.69 and 0.52×10
ī2

 are explained by the relationship 

between the interstitial velocity and the critical velocity necessary to transport desorbed 

asphaltene particles at quartz particle surfaces. Under such near equilibrium conditions, 
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previously deposited asphaltene particles desorb from quartz surfaces and begin to move with the 

flow. The pressure drop then increases when the transported asphaltene particles were trapped or 

absorbed once again on surfaces. The overall deposition process was the combination of 

asphaltene absorption and desorption and asphaltenes mechanical entrapment.
47

 Larger relative 

ratios of the inertia to the viscous forces favour mechanical entrapment. 

Analyses of RTDs of DɛPBRs and their comparison to ɛPBRs reveal the influence of 

impairments on axial dispersion. The RTDs of DɛPBRs were measured after injecting 115 pore 

volumes for ReP of 0.52×10
ī2

. Figure S3.5 shows the RTDs of the EɛPBR, ɛPBR, and DɛPBRs. 

One observes in Figure S3.5a that the maximum absorbance of a DɛPBR shifted left by 

comparison of the values of the ɛPBR, which is attributed to the deposition of asphaltenes. The 

difference in mean volumes between the ɛPBR (53.5 Ñ 0.4 ɛL) and the DɛPBR (52.5 Ñ 0.3 ɛL) 

was 1.0 ɛL, which corresponds to dɲamage/ iɲnitial values of 94.5%. The result was also 

approximated from the mass accumulated of 1.3 mg, which corresponds to a volume decrease of 

~1.1 ɛL and dɲamage/ iɲnitial values of 94.5%. Figure 3.6 and Table 3.4 demonstrate that in general 

axial dispersion increased with increasing ReP(RTD) values. The same trend was observed for 

ReP(RTD) values ranging from 0.86 ×10
ī2

 to 3.44 ×10
ī2

 for ɛPBRs (I and III) and DɛPBRs (II and 

IV), separately. For a given ReP(RTD), however, axial dispersion was reduced by the deposition of 

the asphaltenes at 70.0ÁC. No significant channeling was observed in DɛPBRs, as illustrated by 

the single mode of Figure 3.6 (i.e., the by-bass model does not accurately describe the system).
66

 

The design of ɛPBRs, their characterization, and integration with online analytics lay the 

groundwork for understanding nanofluidic by-pass pore throat models that predict DɛPBRs. 

Such information is ubiquitous towards revealing the relationship of the two deposition 

mechanisms and the dimensionless constraints that describe macroscale scenarios. 
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Table 3.4. Dispersion within ɛPBR and DɛPBRs for different Reynolds numbers 

  ui 

(x10
-4 
m/s) 

ReP(RTD) 

(x10
-2
) 

ů
2
 

(min
2
) 

ůɗ
2
 

 

D*/(uL) 

 

D* 

(x10
-8
 m
2
/s) 

Bo 

(a) 

ɛPBR 

2.46 0.86 0.85 0.018 0.0086 3.60 90 

9.84 3.44 0.07 0.023 0.0112 18.8 360 

15.4 5.38 0.04 0.025 0.0120 31.4 563 

(b) 

DɛPBR 

2.46 0.86 1.02 0.016 0.0079 3.31 85 

9.84 3.44 0.09 0.021  0.0101 16.9 340 

15.4 5.38 0.04 0.024 0.0113 29.6 531 

 

 

 

Figure 3.6. Comparison of E(ɗ) values as a function of dimensionless time (ɗ) for Reynolds 

numbers of 0.86 ×10
ī2

 (I and II) and 3.44 ×10
ī2

 (III  and IV) within ɛPBR (I and III) and 

DɛPBRs (II and IV). 

 

3.5. Conclusions 

The deposition of asphaltenes in porous media, an important problem in science and 

macromolecular engineering, was for the first time investigated in transparent packed-bed 

microreactors with online analytics to generate high-throughput information. Highly 

reproducible, stable packings of quartz particles with porosity of ~40% and permeability of ~500 

mD were designed. The presence of the quartz particles reduced axial dispersion under the same 






























































































