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ABSTRACT 

 The mechanical response of a living cell is notoriously complicated. The complex, 

heterogeneous characteristics of cellular structure introduce diǣculties that simple linear models 

of viscoelasticity cannot overcome, particularly at moderate indentation depths. Herein, a nano-

scale stress-relaxation analysis performed with an Atomic Force Microscope reveals that isolated 

human breast cells do not exhibit simple exponential relaxation capable of being modeled by the 

Standard Linear Solid (SLS) model. Therefore, this work proposes the application of a progression 

of more sophisticated models that may extract the mechanical parameters from the entire 

relaxation response, improving upon existing physical techniques to probe isolated cells. The first 

model under consideration is the Generalized Maxwell (GM) model that distributes the response 

of the cell across multiple time scales in an attempt to replicate the interaction of subcellular 

components. The second is a fractional model that operates without a priori assumptions of the 

cellôs internal structure and describes the fractional time-derivative dependence of the response. 

The results show an exceptional increase in conformance to the experimental data compared to 

that predicted by the SLS model. Both models excel at mapping the relaxation behavior of the cells 

that occurs within a few seconds of the initial force. This area is generally ignored with an SLS fit 

and therefore not included in most cell differentiation studies. The results of the GM model show 

a significant change in the mechanical properties of the first relaxation mode, which validates the 

necessity of the early behaviorôs inclusion. The FZ model preserves the distinctions highlighted in 

the SLS model, but also incorporates the disparity in the early-relaxation times seen in the GM 

model as a change in the composite relaxation time.  
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CHAPTER 1 

INTRODUCTION 

1.1 Problem Statement 

Biological tissue presents one of the largest challenges to date for continuum mechanics. 

The heterogeneity of each sample and the near inýnite catalog of cell types make any eǟort to 

generalize their responses to a certain forcing function impractical. However, there has been 

significant progress in the fledgling science of nanoindentation of individual cells in the last 

decade.  Implementation of scanning probe microscopy has created opportunities for the 

mechanical differentiation of different cell types or those within a disease progression. To analyze 

the data from such experiments and generate useful characterizations, a mechanical analogy of a 

cellôs viscoelastic behavior is necessary. Early studies proved the utility of simple linear models 

of viscoelasticity; however, it has become increasingly apparent that the subcellular architecture 

can have a significant effect on the cellôs relaxation response. Therefore, there is a distinct need 

for a mechanical analogy for individual cells, either linear or non-linear, that may be applied to 

AFM studies that can model arbitrary degrees of complexity in the cellôs structure. Because the 

specific internal structure of the cell cannot be determined precisely, this model would also need 

to perform without knowledge of it. So, this study will document the steps that were necessary to 

approach this goal: 

¶ Review the framework for the extension of Hertzian mechanics into the time-domain 
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¶ Determine the applications of an extended linear model of viscoelasticity as an 

approximation of cell behavior 

¶ Create a model based on the principles of fractional calculus to capture the 

nonlinearity of the relaxation response without the need for model truncation 

¶ Investigate the physical meaning of the parameters of both the extended linear and 

fractional models 

¶ Apply both models to experimental data rendered from invasive and non-invasive 

strains of human breast cancer cells 

¶ Analyze the potential for differentiation between the two lines based on parameter 

values 

1.2 Motivations 

The ability to differentiate between healthy and diseased tissue is a necessary task. 

Unfortunately, it also can be invasive, destructive, and expensive depending on the methods used. 

Chemical approaches often require large samples and carefully controlled working conditions, and 

visual approaches are only effective as a late-indicator of tissue abnormalities. Mechanical 

differentiation eliminates some of these obstacles by relaxing operating conditions, using more 

accessible equipment, and delivering different insights on cell behavior. 

The properties of individual cells are of particular interest due to their extremely small size. 

It is possible to have a collection of thousands of cells from a sample a fraction of the size of those 

required for macro-scale techniques. There are several techniques that have been developed to 

indent or depress individual cells to determine their elastic properties such as, micropipette 

aspiration[1], optical tweezers [2], optical stretching rheometry [3], magnetic twisting [4], and 
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atomic force microscopy (AFM) [5, 6]. Each has their advantages stemming from their different 

geometric configurations; however, AFM techniques have gained wide acceptance due to their 

unparalleled nano-scale resolution. They have successfully characterized a variety of cell lines, 

including prostate [7], bladder [6], lung [8], breast [9, 10], mesothelial [11], blood [12], and 

osteoblast cell samples [13, 14]. 

These techniques can provide information on the elastic behavior of the samples, which may 

vary between cells of different type or condition. Mechanical differentiation relies on these 

discrepancies to generate meaningful conclusions about the effects of disease on a cellôs structure. 

An understanding of the effects on cell morphology could potentially uncover treatment options 

that focus on the reversal or prevention of these effects, which were not apparent from a chemical 

analysis [3, 15]. Extensive research has been done in this area in the past decade where metastatic 

cancer cells harvested from body cavity þuid have already been shown to exhibit a stark diǟerence 

in elasticity from their benign equivalents with the malignant cells being considerably softer [8-

10]. Cells derived from major organs, in this case the human ovaries, have shown similar trends 

[16]. The effect of treatment on the mechanical response of similar cells has also been investigated 

[17].  

Other research has indicated that time-dependent properties may also serve as indicators of 

disease and overall cell motility [18, 19]. To make full use of this discovery, an extension of 

Hertzian mechanics into the time domain by assuming an exponential decay relaxation response 

was developed by Darling et al. [20]. This model made the assumption that the individual cells 

exhibited purely linear viscoelasticity while still retaining all of the other assumptions associated 

with the Hertz model. Their study provides a framework for the development of models that do 

not rely on the same set of assumptions that may better capture the entirety of the cellôs response. 
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Models of linear viscoelasticity cannot capture a complete representation of the relaxation 

response of soft-bodies that exhibit complicated decay or the contribution of multiple time scales. 

In the literature, different models have been proposed for larger-scale samples, such as tissue, that 

more adequately describe the dynamics; however, only a few have discussed their applicability to 

individual cells. A firm understanding of the dynamics of the cell at all time scales will allow for 

a considerably more reliable comparison of time-dependent behavior between different cell 

populations.   

This work is intermediate research. The theoretical foundations exist in previous studies in 

some form; however, the progression of complexity between the proposed models and the 

application of the most flexible model to individual cells is novel. The results of this study have 

the potential for both direct industrial impact and continuing research efforts. 

1.3 Literature Review 

Since the innovation of Darling et al., research groups have applied the time-dependent linear 

extension of Hertzian mechanics to several cells lines to show relationships between cell 

populations in different environmental conditions. Studies have been successful in demonstrating 

differences in the viscous properties of the cells in a cancer progression using a linear model of 

viscoelasticity, where the late-stage cells extracted from a mouse ovary exhibited a lower value 

and more homogeneous distribution for viscosity than the early stage population [21]. 

Studies built onto this technique attempting to generalize the model for thin-layer sample 

testing to remove some of the assumptions imposed on the model by Hertzian mechanics, namely 

that the sample is an infinite half space [22, 23]. In reality the boundaries of the cell are close 
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enough to the point of application of force that there may be contributions in the form of surface 

tension and heterogeneous deformation to the response.  

  

Figure 1. Multiple time scales of the relaxation response 

However, the approximations caused by the elastic portion of the model do not induce a 

change in the shape of the relaxation curve, only the scale. The early-relaxation behavior of the 

cell, generally a few seconds into a trial, exhibits considerable nonlinearity depending on the 

indentation depth of the trial. The reaction force from the cell decays dramatically from the initial 

indentation into a transition region where the response then shifts to a longer, more linear time 

scale as illustrated in Figure 1. This is indicative of a complicated interplay amongst the subcellular 

components all with their own mechanical properties. Therefore, to effectively model the entirety 

of the cellôs response, including the early-relaxation and transition behavior, it is necessary to relax 

the assumptions built into the viscoelastic portion of the model.  
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Figure 2. SLS mechanical schematic 

The viscoelastic model pioneered by the early research in this field is convenient in its 

expression as a network of mechanical elements. The simplest model that captures both stress 

relaxation and creep is the Standard Linear Solid (SLS) model shown in Figure 2 that is an 

arrangement of elastic (Hookean springs) and viscous (Newtonian dashpots) components. The 

response of the mechanical system to a step strain is an exponential function with an additional 

constant representing residual stress. The more fluid-like the sample, the lower the value of 

residual stress. All of the mechanical models proposed in this work will be organized and 

represented in a way similar to the SLS. 

The dependence of substrate interference on indentation depth is still an area of active 

research. Traditionally, indentation studies were capped at 10% of the total cell thickness to 

validate the assumptions of the modified Hertz model and to minimize possible error introduced 

by substrate contribution [24]. At this depth, the responses still exhibit non-exponential behavior, 

as demonstrated by the poor fitting of the initial decay in early studies [20]. However, there is 

growing evidence that this limitation is far too conservative leading to the loss of valuable 

information locked away in the deeper layers of the cell [14, 25-29]. One specific study pushed 

the cell to its elastic limits by indenting the cell until it began to show signs of rupture. The results 
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of the test placed a new restriction on indentation based on substrate error at 50% of the total cell 

height [25]. The extreme indentation depth greatly exaggerates the nonlinearities in the response 

by engaging subcellular components fully and stressing the interaction between them. 

One model that has had success at approximating the response of a cell under moderate 

indentation is the Generalized Maxwell (GM) model [30]. Similar to the concept of modal 

decomposition in the vibration of continuous systems, the relaxation response is broken into a 

discrete series of exponential relaxation components with different time constants (analogous to 

the set of discrete natural frequencies in vibration). The utility of this mathematical construct is in 

the separation of the mechanics of specific structural elements within the cell. Each substructure 

contributes to every mode to a degree; however, the contribution of certain structures will be 

composed almost exclusively of one specific mode. Alternatively, this can be thought of as a 

distribution of the response across a set of time scales, each one being longer than the next. The 

application of the GM model to individual cells is limited, but the results have been promising that 

it is capable of extracting approximations for the biomechanical properties of individual cell 

components [31, 32].  

The GM model is still linear. Expressed as an infinite series of time scales, it can represent 

the relaxation response of a soft-body perfectly. However, computational constraints and physical 

realism calls for truncation of the model. So, it is necessary to determine beforehand how many 

branches to include either as an ad hoc assumption or an informed decision based on the number 

of important subcellular components. 

It is a goal of this study to eventually determine a model that can adequately capture the 

entire response without the necessity for prior knowledge of the cellôs structure or truncation of 

the model. A promising candidate is the Fractional Zener (FZ) model that attempts to characterize 
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the nonlinearities associated with an arbitrarily complex subcellular structure by exploiting the 

nature of fractional mechanics with degree between zero and one. 

The ýeld of fractional calculus has roots nearly as old as those of integer-diǟerential 

calculus, but it has not seen signiýcant growth and application until recent times. Its application to 

viscoelasticity has been thoroughly investigated with particular emphasis on materials that exhibit 

some degree of memory [33-36]. For example, several studies have taken advantage of its 

þexibility to describe the frequency-dependent viscous character of soft polymers [37-39]. Other 

variations of the FZ model have been used to describe the impact or relaxation response of brain, 

bone, atrial tissue, and arterial segments [40-44]. So, the application to individual cells is a natural 

extension.  
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CHAPTER 2 

STRIATED VISCOELASTIC MODEL OF THE CELL (GM MODEL) 

2.1 Modified Hertz Indentation Model 

The experimental data can be sectioned into three regimes, as shown in Figure 3: approach, 

indentation, and relaxation. Before the relaxation response may be ýt to an analytical curve, the 

maximum deþection, ŭ0, must be determined from the indentation region. The indentation data 

may be obtained by multiplying the trial time by the approach velocity and the deþection error by 

the cantilever spring constant. 

  

Figure 3. Regimes of the indentation-relaxation response 

The constitutive mechanical model of the cells is based in contact mechanics. The surface 

properties and adhesive effects of the cell membrane are neglected in this particular analysis. 

Therefore, Hertzian mechanics provides an appropriate foundation for the representation of both 

the elastic and viscoelastic properties of the cell populations [45]. The AFM tip ï sample system 
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is best approximated by contact between a sphere and an infinite half-space, which is described by 

the Hertz-Sneddon model equation: 

  (1) 

The Hertz model is only a true representation of the elastic properties of an isotropic, 

homogeneous, fully elastic material; however, it can be a good approximation of elastic properties 

of biological samples when the indentation region is mainly linear and less than a third of the total 

sample height (FZM 36). For these experiments, the indentation may be expressed as the diǟerence 

in the cantileverôs position, z, and the deþection error returned by the microscope, d. So, data may 

be analyzed linearly in the F2/3 ī d domain by transforming equation (1) into the form (FZM 9): 

  (2) 

Fitting the experimental indentation data will yield an estimation of the point of contact between 

the tip and sample, (z0īd0). 

2.2 Time-Domain Extension of the Modified Hertz Model 

Again, the Hertz model is useful to predict elastic properties, but it does not predict time 

dependent behavior; therefore, it must be combined with an appropriate stress-relaxation model to 

fully describe the response of a sample that is not perfectly elastic. The method developed in 

Darling et al (2006) has been very successful in blending it with the SLS model using the 

correspondence principle in the Laplace domain. Fortunately, the same technique may be used for 

more extensive models assuming that the ratio of stress to strain in the Laplace domain may be 

expressed explicitly, such that: 
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  (3) 

Unfortunately, this excludes certain quasi-linear models where stiǟness is dependent on 

the strain ratio, which have been used to model breast tissue by other experimental methods [46]. 

The correspondence principle links viscoelastic systems with an equivalent elastic system and 

allows for the construction of a solution via analogy [20]. Through the analogous modulus of 

rigidity, a time-dependent modulus may be expressed in the Laplace domain: 

  (4) 

Assuming that the initial contact force is applied constantly throughout the relaxation, it 

may be modeled as a Heaviside function. Equation (1) may then be extended into the Laplace 

domain by replacing Youngôs modulus with the result of equation (4): 

  (5) 

So, this conclusion allows any relaxation model with an explicit transfer function between stress 

and strain to be combined with the Hertz indentation model. 

 Applying this method to the SLS model is straightforward. For brevity, the equation of 

motion for the system may be written compactly: 

  (6) 
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  (7) 

Substitution into equation (5) and transformation back into the time domain gives an extension of 

Hertzian mechanics suitable for time-dependent studies. 

  (8) 

This model has three þexible parameters and can eǟectively model samples that exhibit 

simple exponential relaxation (i.e. characterized by only one relaxation time). The coeǣcient of t 

in equation (6) may also be recast into a characteristic relaxation time that is often more useful in 

experimental procedures: 

  (9) 

The relaxation time represents the point in time where the response has decayed to a certain 

fraction of the total response span: 

  (10) 

2.3 Generalized Maxwell Model 

Without a direct observation of the quality of fit, the SLS model appears to do an excellent 

job at replicating the response of the cell. With coefficients of determination above 0.9, the very 

poor performance of the SLS model in the first few seconds of the response is unexpected. The 
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highest conformance to the model across the largest span of the response. So, if the majority of the 

response follows a single exponential decay, then the fitting procedure will ignore any other 

regions in an attempt to reproduce the majority. This is evidence of the complexity of the response 

of the cell body. The first few seconds comprise another time scale that weakly interacts with the 

later exponential response but is otherwise independent. It is necessary to apply a model that has 

the mathematical underpinnings required to reproduce multiple time-scales. 

 

Figure 4. A simplified diagram of a cell's interior structure shows three major regions. 

A natural attempt to achieve this goal is to discretize the cell, to look to its fine structure 

for motivation. The cell is roughly organized into layers that are then subdivided into structural 

elements, as shown in Figure 4. The cell membrane is the thin outer shell of the cell body that 

controls the cellôs interaction with its outside environment. Slightly deeper is the cytoskeleton 

architecture that is comprised of a complicated network of actin fibers, microtubulin, and other 

intermediate filaments. This forms the structural support of the cell and has been shown to be a 

good indicator of disease progression in a recent cell adherence study. This study investigated the 

importance of the three main cytoskeletal proteins and revealed that specifically the actin stress 

fibers are closely associated with the cellôs overall biomechanical properties. In malignant cells, 
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the network of F-actin stress fibers is disorganized, while it is more regulated in benign cells [18]. 

Located deep inside the cell body, the nucleus is the most robust element in the cell and houses 

the genetics necessary for mundane cell function. Other studies have expressed the contribution of 

the nucleus to the overall cell response [47, 48]. Of course, the cell exhibits considerably more 

fragmentation than this striated model implies; however, any contribution from other small 

elements has not been previously demonstrated.   

  

Figure 5. Mechanical schematic of the GM model 

 A fitting candidate for a striated subcellular architecture is the Generalized Maxwell (GM) 

model, which is similar in form to the Standard Linear Solid (SLS) model, previously employed 

in Wyckoff[49], but incorporates the concept of multiple relaxation times. As a direct analog, this 

corresponds to a larger number of viscous branches in the mechanical structure. Figure 5 shows 

the representative mechanical system of the GM model, where the subscript denotes the branch in 

the parallel structure. The equations of motion for the system may be written compactly: 

  (11) 

A transformation into the Laplace domain results in the transfer function between stress and strain: 
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  (12) 

The procedure from this point is identical to that for the SLS model: substitution into equation (5) 

and an inverse transformation yields a time-dependent force equation that reveals the contribution 

of the multiple branches: 

  (13) 

In this form, it is apparent that the SLS model is a specific case of the GM model where the number 

of viscous branches is restricted to one. Just as before, it is useful to recast the coefficients of t into 

a set of relaxation times according to equation (9). For a striated model only considering the 

contributions of three major cell substructures, the model may be truncated at 3 viscous branches. 

2.4 Experimental Considerations 

 To preserve the novelty of this study, the experimental verification for the utility of the 

GM model will be performed on cell lines that have not previously been subjected to its 

application. Also, the procedure will apply significant indentation (~50% of sample height) that 

will guarantee that different subcellular structures are fully engaged.   
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CHAPTER 3 

 FRACTIONAL MODEL OF VISCOELASTICITY (FZ MODEL) 

3.1 Limitations of a Discrete Striated Model 

 A critical assumption of a striated mechanical model of the cell is a prior understanding of 

both the subcellular structure and the mechanical fixtures between different cell components. For 

example, the GM model as previously introduced assumes that the response of the cell can be 

decomposed linearly into an infinite series of relaxation ñmodes,ò each describing a different time-

scale of the response. However, if the subcellular components interact in a nonlinear fashion, then 

each componentôs contribution may not be neatly decoupled into these separate regimes. In this 

case, a truncated linear model may succeed in fitting the response but miss a possible interpretation 

of the constituent mechanics of the cell. 

 This uncertainty renders a model that does not require specific knowledge of the subcellular 

structure particularly appealing. A model that has the potential to handle arbitrary degrees of 

complexity is the Fractional Zener (FZ) model. Its theoretical roots are in fractional calculus, 

which offers a new perspective on relaxation behavior that incorporates the concept of non-locality 

that linear models cannot include. 



17 

 

3.2 Theory of Fractional Calculus 

 Fractional calculus is a well-established discipline that has lacked significant application 

for decades due to a lack of physical interpretation; however, in the past twenty years, the number 

of opportunities for its use has increased as well as the understanding of its implications. 

 The main departure from integer calculus is the presence of non-integer order derivatives 

and integrals. However, the simplicity of that remark is not an indication of its triviality. In fact, 

these extensions introduce a mathematical property that holds deep physical significance: non-

locality. In this analysis, the value of the degree of the derivative is restricted to a value between 

zero and one to preserve the physicality of the model; although, it is significant that the 

mathematics do support the implementation of any degree, complex, irrational, or otherwise. 

 In the convention of Riemann and Liouville, a derivative of non-integer order may be 

expressed in terms of a composition of integer order operations [33]: 

  (14) 

The convergence of equation (14) is guaranteed across the interval . For larger integer 

values, the gamma function becomes undefined. Also, on this interval the initial conditions of the 

fractional order terms are unnecessary to define explicitly. Looking only at the integral portion of 

the equation reveals the source of the curious nature of the field. For an integer order derivative, 

the contribution of the integral disappears and the equation becomes an expression for repetitive 

differentiation. For non-integer order a, however, the contribution of the integral is essential. 

Therefore, fractional orders of differentiation include the influence of past states on the present 
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value of the derivative. In fact, depending on the bounds of the integration, the operation may 

require information from both past and future states. This is a loose definition of non-locality. 

  Fractional differentiation is a linear operator such that . 

However, another observation of the integrand of equation (14) reveals the nonlinearity that is 

introduced by the operation. For example, the semiderivative (a = 0.5) of the linear function x(t) 

= t may be determined to be 

  (15) 

So, even though the original function was entirely linear, a fractional order derivative leads to a 

power law relationship. This odd duality, a non-trivial linear operator that results in a nonlinear 

transformation of the original function, results in a very flexible theory. 

Transformation into the Laplace domain is very straightforward for fractional operators. 

Instead of resulting in integer powers of s, a transformation of a non-integer derivative results in a 

non-integer power of s when initial conditions are zero. 

  (16) 

Therefore, isolation of a transfer function is not outside the realm of possibility.  

3.3 Applications to Mechanics and Viscoelasticity 

 Fractional calculus provides a mathematical simulation of material memory. By requiring 

knowledge of past states, the field is suited to handling physical situations where compounding 

effects of stress are relevant. Several studies have demonstrated its efficacy at handling the 

behavior of polymers dissolved in solution and other long-chain molecules [35, 37, 38]. 
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Particularly in their frequency-dependent characteristics, these molecules exhibit power-law 

dependencies that may be associated with the complex interactions between individual molecules. 

In biomechanics, fractional relaxation models have successfully matched empirical data from the 

impact testing of bone tissue [40] and the relaxation response of the brain [41], atrial [42], and 

arterial tissue [44].  At the time of this writing, there are no applications of a fractional model of 

mechanics to individual cells. 

  

Figure 6. Mechanical schematic of the FZ model 

 To incorporate fractional principles into a mechanical analogy of relaxation, as 

previously described for the striated linear model, it is necessary to define a mechanical element 

that dissipates energy fractionally. This may be accomplished by modifying the framework of the 

SLS model by replacing the linear dashpot with the eponymous ñspringpotò element as shown in 

Figure 6. Its name, a portmanteau of ñspringò and ñdashpot,ò reþects its fuzzy character. Instead 

of depending on the zeroth or ýrst derivative of strain, it depends on a derivative of fractional order 

such that: 

     (17) () ()[ ]tDt ehs a=
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 The resulting equation of motion is a fractional ordinary differential equation that is not 

surprisingly very similar in form to the linear model. 

  (18) 

Transformation into the Laplace domain yields a transfer function that is also similar, excepting 

the arbitrary powers of s. 

  (19) 

The difficulties associated with this modelôs implementation are apparent upon substitution into 

equation (5): 

  (20) 

If a = 1, then the latter part of equation (20) would transform into an ordinary exponential function. 

However, the fractional power requires a generalization of the exponential function as defined by 

its Taylor series for use in fractional ODEs. This is defined as the Mittag-Leffler function, where 

the factorial function usually present in the exponential series is replaced by the whole Gamma 

function [50]: 

  (21) 

The resulting inverse transformation of equation (20) with this feature becomes 

() () () ()tE
tD

E

E
ttD

E
RR e
h

es
h

s aa +öö
÷

õ
ææ
ç

å
+=+öö

÷

õ
ææ
ç

å

11

1
11

()
ö
ö

÷

õ

æ
æ

ç

å

+
+==

a

a

h

h

e

s

sE

sE
EsK R

1

1

()

ù
ù
ù
ù
ù

ú

ø

é
é
é
é
é

ê

è

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

öö
÷

õ
ææ
ç

å
+

+
-

=

h

n

d

a

a

1
1

3
0

)1(3

4

E
ss

s
E

s

ER
sF R

()
( )ä

¤

=
+G

=

0

1,
1

p

p

p

z
z

a
ae



21 

 

  (22) 

The Mittag-Leǩer function does have a computational cost that depends on the truncation of the 

summation. For this analysis, the summation was allowed to continue until the diǟerence between 

successive partial sums became on the order of 10ī4. 

 Outside of viscoelasticity, fractional calculus has seen application in numerous fields 

where power-law relationships manifest: anomalous diffusion [51], acoustic wave propagation 

[52], fractional quantum theory [53], etc. Often, the substitution of a fractional derivative in place 

of one of integer-order is ad hoc and is entirely motivated by empirical study. This can lead to 

issues understanding the physical implications of the operations. Therefore, it is necessary to attach 

meaning to each parameter involved in a fractional mechanical model. 

3.4 Physical Interpretation of the FZ Model Parameters 

The application of a fractional model implies that the sample does not exhibit simple 

relaxation behavior, so any attempt to impose a simple description will fall short of expectations. 

Instead, a ýrm understanding of how each fractional parameter aǟects the overall shape of a 

sampleôs response will provide an eǟective avenue for comparison between populations. The 

elastic parameters do roughly correspond to their linear counterparts. The relaxed modulus, ER, 

represents the residual stress in the sample after relaxation has ýnished (t Ÿ Ð). A change in the 

relaxed modulus does not correspond to a change in the shape of the response; instead, the entire 

curve will shift proportionally in the direction of the change, illustrated in Figure 7(a). This 

behavior is identical to that exhibited by the SLS model. 
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Figure 7. The influence of the elastic parameters of the FZ model, ER (a) and E1 (b), on the 

response shape 

The ýrst elastic parameter in the FZ model, E1, has a slightly more complicated influence 

than that of the SLS model. Biophysically, it may be interpreted as a measure of a sampleôs initial 

resistance to a load. Like the linear model, a change in E1 will shift the initial force proportionally 

in the direction of the change, demonstrated in Figure 7(b). The eǟect of a change in ER or E1 is 

quantiýed by the relationships: 

  (23) 

Individually, fractional viscosity, h, does not prove to be an eǟective tool for comparison. 

Noting that the argument of the Mittag-Leǩer function must be non-dimensional, it can be shown 

that the units of h depend on the degree of the derivative. Therefore, even within a population it is 

possible that each individual value for fractional viscosity can have a diǟerent unit. However, it 

may be rewritten as a characteristic relaxation time using a process similar to that used in the linear 

derivation. This allows for direct comparison of the viscosity of samples that do not have the same 
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fractional-order time relationship. The relationship can be derived by resolving the units in the 

argument of the Mittag-Leǩer function: 

  (24) 

  

Figure 8. The influence of the characteristic relaxation time of the FZ model 

Figure 8 shows the eǟect of a change in relaxation time on the overall shape of the response. 

In the SLS model, the relaxation time is much more accessible to an experimentalist using the 

initial, F0, and ultimate, FÐ, responses of the sample according to the relationship in equation (23). 

In the FZ model, the fractional relaxation time does not correspond to a ýxed percentage of the 

response span for all samples; instead, the percentage is dependent on the degree of the arbitrary 

derivative: 

  (25) 

For , the relaxation time will represent between 50 and 37% of the response span, 

respectively. 
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Figure 9. Changes in the response shape due to the degree of derivative 

The degree of the arbitrary derivative is more abstract than the other parameters. Instead 

of measuring a mechanical characteristic of the sample, it quantifies the complexity of the 

response. As a varies between zero and one, the character of the Mittag-Leǩer function undergoes 

a transition between a power law to an exponential relationship (40 in FZM), as in Figure 9. So, 

changes in a slide the response along this continuum from a constant, as in a fully elastic sample, 

to an exponential response, as predicted by the SLS model. This is the intrinsic þexibility of the 

FZ model and the distinction between the springpot and the linear dashpot. Diǟerent classes of 

materials exhibit a non-integer value for a as demonstrated in previous literature. For example, the 

value of a for PMMA, a lightweight thermoplastic often used as a substitute for glass, has been 

experimentally determined to be 0.32 [37]; likewise, an analysis of brain tissue has determined a 

value of 0.6, considerably closer to the exponential end of the spectrum [41]. 
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Figure 10. Fractal structure of the springpot element 

The springpot may be physically realized as a fractal arrangement of viscous branches 

whose pattern depends on the specific order of the derivative, such as the stacked sequence 

arrangement in Figure 10. As the limit of this pattern approaches infinity, the mechanical analogy 

behaves according to the fractional element law. This serves as a representation of the interplay of 

the collection of substructures connected by a complicated network of interfaces inside the sample. 

3.5 Experimental Considerations 

 The experimental verification of this model will be performed on individual cells under 

moderate (~30% of the cell height) indentation. This depth is approaching the threshold of 

relevance for the application of the SLS model as confirmed by existing literature. This will 

contrast the experimental procedure for verification of the GM model, which will be performed at 

much higher levels of indentation. Since the FZ model has not previously been applied to 

individual cells in combination with Hertzian mechanics, it is prudent to first verify its applicability 

on a regime that has been studied extensively using other methods.  
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CHAPTER 4 

EXPERIMENTAL VERIFICATION (DEEP INDENTATION) 

4.1 Sample Preparation and Experimental Setup 

MCF10A and MDA-MB-231 breast cell lines, respectively representative of non-invasive 

and highly invasive breast cancer models, were identified for this study and were purchased from 

the American Type Culture Collection (ATCC). The cells were maintained in plastic T-25 cm2 

culture flasks in standard cell culture medium, which for MDA-MB-231 cells is F12:DMEM 

(50:50), 10% fetal bovine serum (FBS), 4 mM glutamine, and penicillin-streptomycin (100 

Units/ml) and for MCF10A cells is Hams F12:DMEM (50:50), 2.5 mM L-glutamine, 20 ng/ml 

epidermal growth factor (EGF), 0.1 ɛg/ml cholera toxin (CT), 10 ɛg/ml insulin, 500 ng/ml 

hydrocortisone and 5% horse serum. For AFM tests, the cells were harvested, seeded at a density 

of 1×105 cells per 12 mm2 glass coverslips coated with 0.1 mg/mL collagen type IV (Sigma-

Aldrich, St. Louis, MO) for 24-30 hrs at 37ºC in humidified 7% CO2-93% air atmosphere prior to 

the AFM experiments to allow the cells to attach. A buffered HEPES solution was then added to 

the coverslip samples (final concentration of 13.5mM) to maintain a physiological pH of 7.2 during 

testing. The final pH in the culture medium was stable for more than two hours at room temperature 

(~24ºC), which is considered adequate time for the total duration of individual experiment 

sessions.  
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The AFM experiments were performed with a Dimension Icon AFM with a closed loop 

controller (Bruker Corporation, Billerica, MA) integrated with an optical microscope. Olympus 

TR400PSA V-shaped SiNi cantilevers (Olympus, Tokyo, Japan) of ~200 ɛm length with 

approximate spring constant values of ~0.02 N/m were employed in all AFM experiments; exact 

spring constant values were measured via the thermal tuning method. The sharp probes were 

modified by attaching glass spheres (Duke Scientific, Waltham, MA) of ~10ɛm diameter onto the 

cantilever free end with two-part epoxy (Miller Stephenson, Sylmar CA), which helped reduce 

damage to the cells due to contact. Additionally, the increased contact area between the cell and 

the probe reduced cell deformation nonlinearity. The exact diameter of the glass sphere and its 

attachment location were identified using a HIROX KH-7700 3D Digital Video Microscope. The 

measurements were carried out on single cells in their respective culture medium at room 

temperature (24°C) by using AFM contact mode. The indentations were done above each cellôs 

nuclear region under optical control and deep into the cell structure to engage all three major 

cellular components: the membrane, cytoplasm, and nucleus. 

4.2 Statistical Data Analysis 

The indentation and relaxation data were ýt to their respective models using a nonlinear 

least-squares approach. For a good estimation of the contact point in the indentation region, each 

sample was ýt to the modified Hertz indentation model iteratively until the diǟerence in estimated 

contact points was below a very small threshold (Ḑ 10 nm). The approximate point of contact was 

then used to calculate the maximum indentation depth for each sample, which is a factor in the 

relaxation models. 

The curve-ýtting procedure generates a set of values for each parameter that can provide 

statistical information about the cell population. Comparisons were made between both models 
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and both cell populations. The experimental factors do not allow for an assumption of normality 

in the distributions, so the statistics reflect changes in the median values of the parameters and do 

not omit outliers. 

4.3 Results of the SLS and GM Model Application 

For both the MCF10A and MDA-MB-231 cell types, the AFM tests were performed on a 

random selection from 25-30 single cells for acquiring stress-relaxation curves. Care was taken 

with the large indentation depth to avoid puncturing or damaging a cell membrane. If puncturing 

occurs, the curve exhibits local saw tooth behavior. No such behavior was observed in our data. 

The improvements over the SLS model fit were considerable as shown in Figure 11. In particular, 

the conformance to the fast relaxation behavior (corresponding to the shortest time scale) is 

excellent. 

  

Figure 11. A qualitative comparison of the SLS and GM fits 

 Quantitative improvements in fit are demonstrated by a plot of the residuals of the 

nonlinear least squares method, Figure 12. Taking both perspectives into account, quantitative and 

qualitative, it is apparent that the decrease in overall residual for each sample is due to the better 

fit in the early time response. 
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Figure 12. Residuals of the nonlinear least-squares process quantitatively show an increase in fit 

quality for the MCF10A(a) and MDA-MB-231 (b) populations. 

 The distributions of relaxed moduli conform to trends observed in previous literature. The 

highly invasive line shows a distinctive softening in comparison to the non-invasive population. 

As shown in Figure 13, the medians differ by 26%, and the MDAMB231 population exhibits a 

lower spread.  

 

Figure 13. Distributions of the calculated relaxed moduli for the GM (a) and SLS (b) models 

 The statistics for the discrete relaxation modes do not exhibit a single unifying trend. 

Instead, the degree and direction of the change between populations varies mode to mode. The 
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statistics for each mode are shown in Figure 14 with the elastic modulus for each mode in the first 

column, the viscous coefficient in the second, and the characteristic relaxation time in the third. 

 

Figure 14. Modal properties calculated by the GM model fit arranged by row 

 Both the elastic and viscoelastic properties of the first mode follow the opposite trend 

predicted by the SLS model. The first elastic modulus for the MDAMB231 line is considerably 

stiffer and more viscous than the MCF10A line with percent differences of 60 and 65%, 

respectively. The time scale for the first mode is very short where for both populations the median 

values are on the order of 10-1 s. Therefore, this mode fully relaxes very quickly in the response. 

Fortunately, this coincides well with observations of the shape of the response curves. 

 The second mode does not show a statistically significant change between the two 

populationsô elastic modulus. The viscosity, however, does increase in the MDAMB231 line by 
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53%. Again, this is counter to the behavior of the SLS fit. The relaxation times are on the order of 

100, which represents an intermediate period between the fast relaxation behavior and the slow, 

exponential response as t ŸÐ. 

 

Figure 15. SLS parameter distributions 

 The third mode is very similar to the results of the SLS fit shown in Figure 15, which is 

unsurprising. Corresponding to the longest time scale included in the model, the characteristic 

relaxation time is on the order of 101, the same regime as that of the SLS model. Also, the 

parameters exhibit the same decreasing trend from the MCF10A to the MDA-MB-231 populations. 

Elasticity decreases by 18% and viscosity by 22%. From an optimization standpoint, it is entirely 

not shocking that the third characteristic time scale matches with the results presented by the SLS 

model fit. The majority of the response of every cell lies within its time scale; therefore, in an 

attempt to correctly represent the majority of the response, the much simpler SLS model found 

optimal solutions when its characteristic time fell into the same region. 

 The data from this experiment are also displayed in Table 1. Note that the reported values 

correspond to the median ± standard deviation to preclude any assumption of normality.  

  



32 

 

Table 1. Mechanical parameters for deep indentation (GM) (median ± standard deviation) 

  1st Mode 2nd Mode 

GM Model ER , (Pa) E (Pa) m, (Paẗs) t (s) E (Pa) m, (Paẗs) t (s) 

MCF10A 297.6 ± 86.4 43.4 ± 14.4 17.2 ± 13.2 0.5 ± 0.2 77.4 ± 15.1 159.2 ± 84.1 2.6 ± 1.5 

MDA-MB-231 217.5 ± 67.0 69.3 ± 25.3 28.5 ± 13.8 0.4 ± 0.1 76.8 ± 25.6 243.0 ± 106.0 3.4 ± 1.0 

SLS Model        

MCF10A 170.2 ± 67.15 -- -- -- -- -- -- 

MDA-MB-231 98.54 ± 63.63 -- -- -- -- -- -- 

     
   

  3rd Mode    

GM Model  E (Pa) m, (kPaẗs) t (s)    

MCF10A  117.9 ± 31.8 3.66 ± 4.29 28.9 ± 18.3    

MDA-MB-231  96.6 ± 33.2 2.85 ± 20.0 28.7 ± 106    

SLS Model        

MCF10A  159.4 ± 34.1 1.57 ± 0.82 12.8 ± 4.06    

MDA-MB-231  131.0 ± 49.2 1.38 ± 0.61 10.8 ± 2.14    
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CHAPTER 5 

EXPERIMENTAL VERIFICATION (MODERATE INDENTATION) 

5.1 Sample Preparation and Experimental Setup 

 Again, the utility of this model was tested on the relaxation response of two human breast 

cell populations: MDA-MB-231 (highly invasive breast cancer), and MCF10A (non-invasive 

breast cancer). The cells were purchased from the American Type Culture Collections (ATCC). 

The MDA-MB-231 cells were maintained at 37̄C in a humidiýed 5% CO2-95% air atmosphere 

in F12:DMEM (50:50) culture medium which contained 10% fetal bovine serum (FBS), 4 mM 

glutamine, and penicillin-streptomycin (100 Units/ml). The MCF10A cells were grown in 

F12:DMEM (50:50), 2.5 mM L-glutamine, 20 ng/ml epidermal growth factor (EGF), 0.1 ɛg/ml 

cholera toxin (CT), 10 ɛg/ml insulin, 500 ng/ml hydrocortisone and 5% horse serum. For AFM 

tests, cells were harvested, plated at a density of 1×105 cells per 12mm2 glass cover slip, and 

incubated for 24 hours. Cover slips were initially coated with 0.1 mg/mL collagen type IV (Sigma-

Aldrich, St. Louis, MO) to help the cells attach to the glass cover slips. AFM tests were carried 

out on single cells in the standard culture medium at room temperature (24C̄). A buǟered HEPES 

solution was added to the samples at a ýnal concentration of 13.5 mM before the AFM testing to 

maintain a constant physiological pH of 7.2 during experiment sessions. 

 All experiments were conducted with a Dimension Icon AFM (Bruker Corporation, 

Billerica, MA). TR400PSA V-shaped silicon nitride cantilevers (Olympus, Tokyo, Japan) of Ḑ200 
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mm lengths and Ḑ0.02 N/m nominal spring constants were used. The practical spring constants of 

the cantilevers were experimentally measured using thermal noise tuning and were within 20% of 

the nominal values. The sharp probes were modiýed by attaching glass microspheres (Duke 

Scientiýc, Waltham, MA) of Ḑ10mm diameter onto the cantilever free end with two-part epoxy 

(Miller Stephenson, Sylmar, CA), which increased the total surface contact area and, consequently, 

reduced damage to the cells during contact. Their exact radius was identified using a HIROX KH-

7700 3D Digital Video Microscope. The measurements were performed above each cellôs nuclear 

region under optical control with a constant approach velocity of Ḑ5 mm/s at a 5 kHz sampling 

frequency. The indentation speed was optimized to be the most effective representation of a step-

strain response while remaining within reasonable bounds for the AFM control scheme. The 

maximum indentation force was limited to a trigger of 9 ± 3 nN which induced a ~2-3 µm 

indentation into the cellular substructures. 

5.2 Statistics and Curve Fitting 

The indentation and relaxation data were ýt to their respective models using a nonlinear 

least-squares approach. For a good estimation of the contact point in the indentation region, each 

sample was ýt to the modified Hertz indentation model iteratively until the diǟerence in estimated 

contact points was below a very small threshold (Ḑ 10 nm). The approximate point of contact was 

then used to calculate the maximum indentation depth for each sample, which is a factor in the 

relaxation models. 

The curve-ýtting procedure generates a set of values for each parameter that can provide 

statistical information about the cell population. Each parameter distribution was compared against 

its parallel in both models (FZ and SLS) for both sample populations (MDA-MB-231 and 

MCF10A). The experimental factors do not allow for an assumption of normality in the 
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distributions, so the statistics reflect changes in the median values of the parameters and do not 

omit outliers. 

5.3 Results of the SLS and FZ Model Application 

  

Figure 16. A qualitative comparison of the SLS and FZ fits 

A cursory visual assessment of the diǟerent model ýts for any one cell is enough to see the 

drastic improvements in accuracy made by the implementation of the FZ model. From a qualitative 

standpoint shown in Figure 16, it is evident that the FZ model effectively reproduced the fast 

relaxation characteristic of the sample populations with much higher accuracy than the SLS model. 

Figure 17 shows a comparison of the residuals from the nonlinear fitting procedure indicating a 

significant increase in fit quality even for those samples where the SLS model performed 

exceptionally poorly.   
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Figure 17. Residuals from the nonlinear least-squares fitting procedure quantify the goodness of 

fit for the MCF10A (a) and MDA-MB-231(b) populations 

The parameter distributions extracted from the sample population are coherent and support 

the relevancy of both viscoelastic models. For each parameter, the distributions from both models 

for both cell populations are compared below. Note that the extended lines on each plot represent 

the reasonable span of each distribution, and outliers are marked with symbols. The position of the 

median line inside of the colored box is indicative of the skew in the distribution. 

A comparison of the relaxed moduli, ER, conforms to the trends seen in previous 

comparative works, where the malignant line exhibits less capacity for residual stress. The MDA-

MB-231 line shows a 24% decrease in the median relaxed modulus relative to the MCF10A line 

in the FZ model and a 42% decrease in the SLS model. Figure 18(a) illustrates the distributions of 

the data generated by the FZ model and Figure 18(b) shows the distribution from the SLS model. 

The most obvious observation is the lower median values predicted by the FZ model; 

coincidentally, this is also the most significant. Both FZ distributions are shifted to lower values 

and are more symmetric than the SLS counterparts. The near-zero lower bounds indicated by the 

FZ model insist an extraordinarily small capacity for resisting further deformation as time goes on. 
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Incidentally, this implies that the fractional behavior of the cell populations becomes liquid-like at 

an indefinitely long sample time, more so for the malignant cell line as indicated by the lower first-

quartile and median metrics. 

 

Figure 18. Distributions of the relaxed moduli from the FZ (a) and SLS (b) models 

A curious effect to the increase in overall fit quality is a significant increase in the first 

elastic parameter, E1. Because the FZ model successfully captures relaxation at the fast time scale 

(within the first few seconds of the application of force), it correctly models the initial force 

between the tip and sample. Recall that this effect is quantified in equation (23) and evident from 

the inset of Figure 16. Otherwise, the trend captured in the SLS model is paralleled in the results 

of the FZ model. Again, the MDA-MB-231 population exhibits softer elastic qualities than the 

MCF10A by 54% in the FZ model and 53% in the SLS model, shown in Figure 19. 
















