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ABSTRACT

The mechanical response of a living cell is notoriously complicated. The complex,
heterogeneousharacteristics of cellular structure introduceedulties that simple linear models
of viscoelasticity cannot overcome, particularly at moderate indentation depths. Herein; a nano
scale stresgelaxation analysis performed with an Atomic Force Microsaepeals that isolated
human breast cells do not exhibit simple exponential relaxation capable of being modeled by the
Standard Linear Solid (SLS) mod&herefore, this work proposes the application of a progression
of more sophisticated models that maytrast the mechanical parameters from tdire
relaxation response, improving upon existing physical techniques to probe isolated cells. The first
model under consideration is the Generalized Maxwell (GM) model that distributes the response
of the cell aooss multiple time scales in an attempt to replicate the interaction of subcellular
components. The second is a fractional model that operates without a priori assumptions of the
cell s internal st r uct u-derivatver dibpentles af the resposise.t h e
The results show an exceptional increase in conformance to the experimental data compared to
that predicted by the SLS modBloth models excel at mapping the relaxation behavior of the cells
that occurs within a few seconds of thitiah force. This area is generally ignored with an SLS fit
and therefore not included in most cell differentiation studies. The results of the GM model show
a significant change in the mechanical propertigh®first relaxation mode, which validateg th
necessity of the early behaviords inclusion.
the SLS model, but also incorporates the disparity in the-esldyation times seen in the GM

model as a change in the composite relaxation time.
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CHAPTER 1

INTRODUCTION

11 Problem Statement

Biological tissue presents one of the largest challenges to date for continuum mechanics.
The heterogeneity of each sample andaottoe near
generalize their responses to a certain forcing function imprackicalever, there has been
significant progress in the fledgling science of nanoindentation of individual cells in the last
decade. Implementation of scanning probe microscopy has created opportunities for the
mechanical differentiation of different cell typestbose within a disease progressiba.analyze
the data from such experiments and generate useful characterizations, a mechanical analogy of a
cell 6s viscoelastic behavior is necessary. Ea
of viscoelaticity; however, it has become increasingly apparent that the subcellular architecture
can have a significant effect on the cell d6s r
for a mechanical analogy for individual cells, either linear or-lhmar, that may be applied to
AFM studies that can model arbitraBegausethg r ee s
specific internal structure of the cell cannot be determined precisely, this model would also need
to perform without knowledgef it. So, this studyvill document the steps that were necessary to

approach this goal:

I Review the framework for the extension of Hertzian mechanics into thelbmain



1 Determine the applications @n extended linear modef viscoelasticityas an
approximation of cell behavior

1 Create a model based on the principles of fractional calculus to capture the
nonlinearity of the relaxation response without the need for model truncation

1 Investigate the physical meaning of the parameters of both the ectieme and
fractional models

1 Apply both models to experimental data rendered from invasive anthwasive
strains of human breast cancer cells

1 Analyze the potential for differentiation between the two lines based on parameter

values
1.2 Motivations

The ability to differentiate between healthy and diseased tissug mecessary task.
Unfortunately, it also can be invasive, destructive, and expensive depending on the methods used.
Chemical approaches often require large samples and carefully controtledgramnditions, and
visual approaches are only effective as a-iladgcator of tissue abnormalitiesMechanical
differentiation eliminates some of thesbstacledy relaxing operating conditions, using more

accessiblequipment, and delivering differemsights on celbehavior

The properties of individual cells are of particular interest due to their extremely small size.
It is possible to have a collection of thousands of cells from a sample a fraction of the size of those
required for macrecale eéchniques. There are several techniques that have been developed
indent or depress individual cells to determine their elastic properties suchicaspipette

aspration1], optical tweezerg2], optical stretching rheoetry [3], magnetic twistind4], and



atomic force microscopy (AFMPp, 6]. Eachhas their advantages stemming from their different
geometric configurations; however, AFM techniques have gained wide acceptancethieie to
unparalleled nanacale resolution. Thelyave successfully characterizadrariety of cell lines,
including prostte [7], bladder[6], lung [8], breast[9, 10], mesothelial[11], blood[12], and

osteoblast cell sampl¢$3, 14]

These techniques can provide information on the ellastiavior of the samples, which may
vary between cells of different type or condition. Mechanical differentiation relies on these
di screpancies to generate meaningful concl usi
An understanding of the fetcts on cell morphology could potentially uncover treatment options
that focus on the reversal or prevention of these effects, which were not apparent from a chemical
analysig3, 15]. Extensve research has been done in this area in the past decadenetestatic
cancer cells harvested from body cavaéadaepcepui d |
in elasticity from their benign equivalents with the malignantsdming considexbly softer[8-
10]. Cells derived from major organis, this caséhe human ovaries, have shown similar trends
[16]. The effect ofieatment onhemechanical responsd similar cellshas also been investigated

[17].

Other research has indicated that tirdependent properties may also serve as indicators of
disease and overall cathotility [18, 19] To make full use of this discovergn extension of
Hertzian mechanics into the time domain by assuming an exponential decay relaxation response
was developed by Darling et §20]. This model made the assumption that the individual cells
exhibited purely linear viscoelasticity while still retaining all of the other assummgstiated
with the Hertz model. Their study provides a framdwfor the development of models that do

not rely on the same set of assumptitiveé may better capture theentyet of t he cel | & s

3



Models of linear viscoelasticity cannot capture a complete representation of the relaxation
response of sothodiesthat exhibit complicated decay or the contribution of multiple time scales.
In the literature, different models have been proposed for fsogde samples, such as tissue, that
more adequately describe the dynamics; however, only a few have discugsapiieability to
individual cells. A firm understanding of the dynamics of the cell at all time scales will allow for
a considerably more reliable comparison of tdependent behavior between different cell

populations.

This work is intermediate reagech. The theoretical foundations exist in previous studies in
some form; however, the progression of complexity between the proposed models and the
application of the most flexible model to individual cells is novel. The results of this study have

the poential for both direct industrial impact and continuing research efforts.

1.3 Literature Review

Since the innovation of Darling et al., research groups have applied thégpaadent linear
extension of Hertzian mechanics to several cells lines to shtatiorships between cell
populations in different environmental conditions. Studies have been successful in demonstrating
differences in the viscous properties of the cells in a cancer progression using a linear model of
viscoelasticity, where the lattage cells extracted from a mouse ovary exhibited a lawakre

and more homogeneous distribution for viscosity than the early stegdation[21].

Studies built onto this technique attempting to generalizenibee! for thinlayer sample
testing to remove some of the assumptions imposed on the model by Hertzian mechanics, namely

that the sample is an infinite half spgdée, 23] In reality the boundaes of the cell are close



enough to the point of application of force that there may be contributions in the form of surface

tension and heterogeneous deformation to the response.

Force, nN

time, s
Figurel. Multiple time scales of the relaxatioesponse

However, he approximations caused by the elastic portion of the model do not induce a
change in the shape of the relaxation curve, only the scalesdrhyerelaxation behavior of the
cell, generally a few seconds into a trial, exhibits conalaler nonlinearitydepending on the
indentation depth of the trial’he reaction force from the cell decays dramatically from the initial
indentation into a transition region where the response then shifts to a longedjmear time
scaleas illustrated ifrigurel. This is indicative of a complicated interplay amongst the subcellular
components all with their own mechanical properties. Thereforéeitieely model the entirety
of the cell 06s r e srplaxaisnand transitiorl behawvion igis nedessarygcarelalx y

the assumptions built into the viscoelastic portion of the model.
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Figure2. SLS mechanicalchematic

The viscoelastic model pioneered by the early research in this field is convenient in its
expression as a network of mechanical elements. The simplest model that captures both stress
relaxation and creep is the Standard Linear Solid (SLS) nsidein in Figure 2 that is an
arrangement of elastic (Hookean springs) and viscous (Newtonian dashpots) components. The
response ofhe mechanical system to a s&minis an exponential function with an additional
constant representing residual stress. The more-ltkedthe sample, the lower the value of
residual stress. All of the mechanical models proposed in this work will be organized and

represented in a way silai to the SLS.

The dependence of substrate interference on indentation depth is still an aveof
research. Traditionally, indentation studies were capped at 10% of the total cell thickness to
validate the assumptions of the modified Hertz modeltandinimize possible error introduced
by substrate contributioj24]. At this depth, the responses still exhibit rexponential behavior,
as demonstrated by the poor fitting of tha&ial decay in early studie0]. However, there is
growing evidence that this limitation is far too conservative leading to theofosaluable
information locked away in the deeper layers of the[ddl] 2529]. One specific study pushed

the cell to its elastic limits by indenting the cell until it began to show signs of rupture. The results
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of the test pleed a new restriction on indentation based on substrate error at 50% of the total cell
height[25]. The extreme indentation depth greatly exaggerates the nonlinearities in the response

by engaging subcellular compongfully and stressing the interaction between them.

One model that has had success at approximating the response of a cell under moderate
indentation is the Generalized Maxwell (GM) moda0]. Similar to the concdpof modal
decomposition in the vibration of continuous systems, the relaxation response is broken into a
discrete series of exponential relaxation components with different time constants (analogous to
the set of discrete natural frequencies in vibratidhg utility of this mathematical construct is in
the separation of the mechanics of specific structural elements within th&aefi. substructure
contributes to every mode to a degree; however, the contribution of certain structures will
composedalmost exclusivelyof one specific modeAlternatively, this can be thought of as a
distribution of the response across a set of time scales, aadbemg longer than the neXthe
application of the GM model to individual cells is limited, but the re$at® been promising that
it is capable ofextractingapproximationsfor the biomechanical properties of individual cell

component$31, 32]

The GM model is still linear. Expressed as amiitd series of time scales, it can represent
the relaxation response of a sbéidy perfectly. However, computational constraints and physical
realism calls for truncation of the model. So, it is necessary to determine beforehand how many
branches to inclle either as an ad hoc assumption or an informed decision based on the number

of important subcellular components.

It is a goal of this study to eventualiyetermine a model that can adequately capture the
entire responswithout the necessity fqrior kro wl edge of the cell 6s str

the model. A promising candidate is the Fractional Zener (FZ) model that attempts to characterize

7



the nonlinearities associated with an arbitrarily complex subcellular structure by exploiting the

nature of factional mechanics with degree between zero and one.

The yeld of fractional cal cul us-dideragial r oot s
calculus, but 1t has not seen signiycant gr owil
viscoelastity has been thoroughly investigated with particular emphasis on materials that exhibit
some degree of memon33-36]. For example, several studies haaien advantage of its
pexibility to describe the frequenaependent viscous character of soft polynjgvs39]. Other
variations of the FZ model have been used to describe the impact or relaxation response of brain,
bone, atrial tissue, and arterial segméhds44]. So, the application to individual cells is a natural

extension.



CHAPTER 2

STRIATED VISCOELASTC MODEL OF THE CELL(GM MODEL)

2.1 Modified Hertz Indentation Model

The experimental data can be sectioned into three regimes, as sHeguré@8: approach,
indentation, and relaxatioB e f or e t he r el axat i amlyticdupethes e may
ma x i mum d@&pnest beidetarmined from the indentation regibime indentation data

may be obtained by multiplyimgh e tri al time by the approach v

the cantilever spring constant.

RELAXATION

Force, (nN)

CONTACT, 7

time, (s)

Figure3. Regimes of the indentatienelaxation response
The constitutive mechanical model of the cells is based in contact mechanics. The surface
properties and adhesive effects of the cell membrane are neglected in this particulas.analysi
Therefore, Hertzian mechanics provides an appropriate foundation for the representation of both

the elastic and viscoelastic properties of the cell populafitsisThe AFM tipT sample system

9



is best approximatdaly contact between a sphere and an infinite-$gadice, which is described by

the HertzSneddon model equation:

_4E~R 3p
F‘3(1-/72)d3

1)

The Hertz model is only a true representation of the elastic properties of an isotropic,
homogeneousully elastic material, however, it can be a good approximation of elastic properties
of biological samples when the indentation region is mainly linear and less than a third of the total
sample heighFZM 36). For these experiments, the indentation agxpressed as the&drence

i n the cant izl eavnedr 6tsh ep odseipteicotni,on e rdrSo,datamay ur ne d

be analyzed linearly in tHe?®1 d domain by transformingquation (1)nto the form(FZM 9):

. 213
F23_$4 EyvVR 9

& (1- )y

N 2/3
@4 EVRY

O Gy

(zp- do) 2

Fitting the experimental indentation data will yield an estimation of the point of contact between

the tip and samplézol do).
22 Time-Domain Extension of the Modified Hertz Model

Again, the Hertz model is useful to predict elastic properties, but it does not predict time
dependent behavior; therefore, it must be combined with an appropriatesta@ation model to
fully describe the response of a sample that is not perfectyiceldhe method developed in
Darling et al (2006 has been very successful in blending it with the SLS model using the
correspondence principle in the Laplace domain. Fortunately, the same technique may be used for
more extensive models assuming thatrtie of stress to strain in the Laplace domain may be

expressed explicitly, such that:
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=K(9 €)

Unfortunately, this excludes certain quiisear models where sthess is dependent on
the strain ratio, which have been d4e model breast tissue by other experimental metfls
The correspondence principle links viscoelastic systems with an equivalent elastic system and
allows for the construction of a solution via analdg@]. Through the analogous modulus of

rigidity, a timedependent modulus may be expressed in the Laplace domain:
E(9) =(1+mK(s) (4)

Assuming that the initial contact force is applied constantly throuigthe relaxation, it
may be modeld as a Heaviside function. Equati@d) may then be extended into the Laplace
domain by replacing Youeqgadsm(4dmodul us with the

= (g = ARB K(9
"0 s ©

So, this conclusion allows amglaxation model with an explicit transfer function between stress

and strain to be combined with the Hertz indentation model.

Applying this method to the SLS model is straightforward. For brevity, the equation of

motion for the system may be written qoaactly:

o

al

o) 1 .. & EgG =
: 1gas(t)+7ns(t)—é%+glgae<t)+77e(t) ©)

whereD in this case is the differential operator such D3¢ ®:d“/dt”( (j . A Laplace transform

results in an equation of similar form:
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=K(9 =+ 17 § ™

¢ E1+/TB—;

o 0

Substitution inteequation (5and transformation back into thiene domain gives an extension of

Hertzian mechanics suitable for tirdependent studies.

Rd(]3 - (B /it
()= 20 [e, reen]

(8)

This model has t hr ee dJedivelyindde sam@es thah exhilgitr s a n
simple exponential relaxation (i.e. characterized by only one relaxation time). Téeeieoe oft
in equation (6)may also be recast into a characteristic relaxation time that is often more useful in

experimental procedures:
¢, :g ©

The relaxation time represents the point in time where the response has decayed to a certain

fraction of the total response span:
F =R +e(R- R) (10)
23  Generalized Maxwell Model

Without a direct observation of the quality of fit, the SLS model appears to do an excellent
job at replicating the response of the cell. With coefficients of determination above 0.9, the very
poor performance of the SLS model in the first few secondseofdsponse is unexpected. The
nature of the SLS model restricts its utility to purely exponential curves. Therefore, a nonlinear

least squares method will attempt to find the most appropriate parameters that will cause the

12



highest conformance to the modeloss the largest span of the response. So, if the majority of the
response follows a single exponential decay, then the fitting procedure will ignore any other
regions in an attempt to reproduce the majority. This is evidence of the complexity cpihese

of the cell body. The first few seconds comprise another time scale that weakly interacts with the
later exponential response but is otherwise indepenliéntiecessary to apply a model that has

the mathematical underpinnings required to repredualtiple timescales.

Cell membrane

Cytoskeleton

Nucleus

Figure4. A simplified diagram of a cell's interior structure shows three major regions.

A natural attempt to achieve this goal is to discretize the cell, to look to its fine structure
for motivation.The cell is roughly organized into layers that are then subdivided into structural
elementsas shown irFigure4. The cell membrane is the thin outer shell of the callybibat
controls the cell 6s interaction with its out ¢
architecture that is comprised of a complicated network of actin fibers, microtubulin, and other
intermediate filaments. This forms the structuralpsarpof the cell and has been shown to be a
good indicator of disease progression in a recent cell adherence study. This study investigated the

importance of the three main cytoskeletal proteins and revealed that specifically the actin stress

fibersaread s el y associated with the cell 6s overall

13



the network of Factin stress fibers is disorganized, whilis more rgulated in benign celld.8].

Located deep inside the cell body, the nucleus is the most robust element in the cell and houses
thegeneticsnecessary for mundane cell function. Other studies have expressed the contribution of
the nucleus to the overall cell respoid@é, 48] Of course, the cell exhibits considerably more
fragmentation than this striated model implies; however, any contribution from other small

elements has ntsieen previously demonstrated.

Figure5. Mechanical schematic of the GM model

A fitting candidatefor a striated subcellular architectuseéhe Generalized Maxwell (GM)
model, which issimilar in form to theStandard Linear SolidSLS) model, previously employed
in Wyckoff[49], but incorporates the concept of multiple relaxation times. As a direct analog, this
corresponds to a larger number of viscbtenches in the mechanical structifgure5 shows
the representative mechanical system of the GM model, where the subscript denotes the branch in

the parallel structure. The equations of motion for the system may be written compactly:

_48 E,mD E.mD @
5_%R+El+ngD+"'+En+ngD§e (12

A transformation into the Laplace domain results in the transfer function between stress and strain:
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o

s G
E:K(S)=%R+—Eln?s +___+—E”nz 2 (12)

e & E+ms 7 E, +mst
The procedure from this point is identical to that for the SLS medbktitution intaequation (5)
and an inverse transformation yields a tidependent force equation that reveals the contribution
of the multiple branches:

_4\/Rag - (B / m)t - (E,/ m)t
F(t)_g(l_n)[ER+E1e M4 +E € "ﬂ] (13)

In this form, it is apparent that the SLS model isecgj case of the GM model where the number
of viscous branches is restricted to one. Just as before, it is useful to recast the coeffidietiots of
a set of relaxation times according @équation (9) For a striated model only considering the

contribuions of three major cell substructures, the model may be truncated at 3 viscous branches.

2.4  Experimental Considerations

To preserve the novelty of this study, the experimental verification for the utility of the
GM model will be performed on cell linethat have not previously been subjected to its
application. Also, the procedure will apply significant indentation (~50% of sample height) that

will guarantee that different subcellular structures are fully engaged.
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CHAPTER 3

FRACTIONAL MODEL OFVISCOELASTICITY (FZ MODR.)

3.1 Limitations of a Discrete Striated Model

A critical assumption of a striated mechanical model of the cell is a prior understanding of
both the subcellular structure and the mechanical fixtures between different cell comgements.
example, the GM model as previously introduced assumes that the response of the cell can be
decomposed |inearly into an infinite sefties of
scale of the response. However, if the subcellular compsi@stact in a nonlinear fashion, then
each componentés contr i buihtotbese separgte ragonies. Ib#is ne at
case, a truncated linear model may succeed in fitting the response but miss a possible interpretation

of the constituenmechanics of the cell.

This uncertainty renders a model that does not require specific knowledge of the subcellular
structure particularlyappealing A model that has the potential to handle arbitrary degrees of
complexity is the Fractional Zener (FZ) nabdlts theoretical roots are in fractional calculus,
which offers a new perspective on relaxation behavior that incorporates the conceploaftion

that linear models cannot include.
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3.2  Theory of Fractional Calculus

Fractional calculus is a welidablished discipline that has lacked significant application
for decades due to a lack of physical interpretation; however, in the past twenty years, the number

of opportunities for its use has increased as well as the understanding of its implications.

The main departure from integer calcuisishe presence of nanteger order derivatives
and integrals. However, the simplicity of that remark is not an indication of its triviality. In fact,
these extensions introduce a mathematical property that hadgsptigsical significance: nen
locality. In this analysis, the value of the degree of the derivative is restricted to a value between
zero and one to preserve the physicality of the model; although, it is significant that the

mathematics do support the impientation of any degree, complex, irrational, or otherwise.

In the convention of Riemann and Liouville darivative of noninteger order may be

expressed in terms of a composition of integer order operg88hs

1
Aql- a)

L
DAX(t) = dﬂtﬁ - x)F 2 x(x) dx (14)

The convergence aquation (14)s guaranteed across the inter@ata <1. For larger integer
values, the gamma function becomes undefiAésb, on this interval the initial conditions of the
fractional order terms are unnecessary to define explititigking only at the integral portion of

the equation reveals the source of the curious nature of the field. For an integer order derivative,
the contribution of the integral disappears andettpgation becomes an expression for repetitive
differentiation. For nosinteger order .ahowever, the contribution of the integral is essential.

Therefore, fractional orders of differentiation include thifuence of past states on the present
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value of the derivativeln fact, depending on the bounds of the integration, the operation may

require information from both past and future staiéss is a loose definition of nelocality.

Fractional differentition is a linear operator such thBf[X(t)- y(t)]=D?x(t) - D?y(t).
However, aother dservation otthe integrand otquation (14)yeveals the nonlinearity that is
introducedby the operation. For example, the semiderivatave 0.5) of the linear functiorx(t)

=t may be determinetb be
pY7[t]= 2 12

So, even though the original function was entirely linear, a fractional order derivative leads to a
power law relationship. This odd duality, a Aoivial linear operator that results in a nonlinear

trangormation of the original function, results in a véigxible theory.

Transformation into the Laplace domain is very straightforward for fractional operators.
Instead of resulting in integer powerssph transformation of a neinteger derivative resudtin a

norrinteger power o§ when initial conditions are zero.

4o f @)f=s*F(9 (16)
Therefore, isolation of a transfer function is not outside the realm of possibility.
3.3  Applications to Mechanics and Viscoelasticity

Fractional calculus providesmathematical simulation of material memory. By requiring
knowledge of past states, the field is suited to handling physical situations where compounding
effects of stress are relevant. Several studies have demonstrateficétsyedt handling the

behavior of polymers dissolved in solution and other {omgin moleculeg35, 37, 38]
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Particularly in their frequeneglependent charagctstics, these molecules exhibit powaw
dependencies that may be associated with the complex interactions between individual molecules.
In biomechanicsfractional relaxation models have successfully matched empirical data from the
impact testing of bam tissug40] and the rkaxation response of the brgul], atrial [42], and

arterial tissie [44]. At the time of this writing, there are no applications of a fractional model of

mechanics to individual cells.

/-
Jf

Figure6. Mechanical schematic of the FZ model

To incorporate factional principles into a mechanical analogy of relaxation, as
previously described for the striated linear model, it is necessary to define a mechanical element
thatdissipates energy fractionally. This may be accomplished by modifying the framewhbek of t
SLS model by replacing the Iinear dashpot wit
Figure6.ltsname a port manteau of MAspringo almeadi das hry
of depending on the zeroth or yrst derivative

such that:

s(t)=nD?[€t)] (17)
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The resultingequation of motion is a fractional ordinary differential equation that is not

surprisingly very similar in form to the linear model.

%ggas(t)+%s(t):é§+%§3ae(t)+% ) 8

Transformation into the Laplace domain yields a transfer function that isiaidar, excepting

the arbitrary powers .

$ _i(9=tE,+ B 8
Rl NSvEL: (19

The difficulties associated with this model 6s

equation (5)

g E
Flg=2yRb et g2 s 20)
31-m€s &3 o)
@-n)¢c g, E O
& ey Fﬁ%
e ¢C

If @ =1, then the latter part efjuation (20yvould transform into an ordinary exponential function.
However, the fractional power requires a generalization of the exponential function as defined by
its Taylor series for use in fractional ODEs. This is dafias the Mittad effler function, where

the factorial function usually present in the exponential series is replaced by the whole Gamma

function[50]:

€.(2)= a a%ﬂ) (21

p=0

The resulting inversednsformation oéquation (20vith this feature becomes
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_4Ré e & E .00
F(t)_§(1_ n)gER+Elea,lé£Tlt @Ju (22

The MittagLek er function does have a computational cost that depmmtise truncation of the
summaion. For this analysis, the summation was allowecbtatinue until the dierence between

successive partial sums became on the order'6f 10

Outside of viscoelasticity, fractional calculus has seen application in numerous fields
where powettaw relationships manifesanomalous diffusiof51], acoustic wave propagation
[52], fractional quantum theois3], etc. Often, the substitution of a fractional derivative in place
of one of integeorder is ad hoc and is entirely motivated by empirical study. This can lead to
issues understanding the physical implications of the operations. Therefore, it is necessary to attach

meaning to each parameter involved in a fractional mechanical model.
3.4  Physical Interpretation of the FZ Model Parameters

The application of a fractional model implies that the sample does not exhibit simple
relaxation behavior, so any attempt to impose a simple description will fall short of expectations.
| nst ead, erstianding oh how eath fractional parametgedas the overall shape of a
sampl eds r es pon &eetivevavehude fopconoparisah detwaen populations. The
elastic parameters do roughly correspond to their linear counterparts. The relaxed nifdulus,
represents the residual stressY i) .t he cshanpde |
relaxed modulus does not correspond to a change in the shape of the resptaaskthe entire
curve will shift proportionally in the direction of thehange, illustratedn Figure 7(a). This

behavior is identical to that exhibited by the SLS model.
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Figure7. The influence of the elastmarameters of the FZ modek &) and & (b), on the
response shape

T h est glastic parameter in the FZ modegl, has a slightly more complicatétfluence
than that of the SLS model. Biophysicalaly,
resistance to a load. Like the linear model, a changewill shift the initial force proportionally
in the direction of the change, demonstrate#igure7(b). The éect of a change ifr or E; is
guantiyed by the relationships:

R Er+E

Individually, fractional viscosity/7, does not prove to be aaetive tool for comparison.
Noting that the argument of the Mittagk erfunction must be noedimensional, it can be shown
that the units ofr depend on the degree of the derivative. Therefore, even within a population it is
possible that each individual value for fractional viscosity can havaeaetit unit. However, it
may ke rewritten as a characteristic relaxation time using a process sintilat tsed in the linear

derivaion. This allows for direct comparison of the viscosity of samples that do not have the same
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fractionalorder time relationship. Thelegionship carbe derived by ®olving the units in the

argument of the Mittadgrek er function:

pu i
t =%§ (24

owun
e

Time, (s)

Figure8. The influence of the characteristic relaxation time of the FZ model
Figure8 shows the &ectof a change in relaxation time on the overall shape of the response.
In the SLS model, the relaxation time is much more accessible to an experimentalist using the

initial, Fo, and ultimateFp, responses of the sample according to the relationskiuiation (23)

Inthe FZmodel t he fracti onal rel axation time does

response span for all samples; instead, the percentdgpaadent on the degree of the arbitrary

derivative:

Ft:Fn+@,1(':DQFO' Fu) (25)

For O<a<1, the relaxation time will represent between 50 and 37% of the response span,

respectively.
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Time, (s)

Figure9. Changes in the responsieape due to the degree of derivative

The degree of the arbitrary derivative is more abstract than the other paraimeteesi
of measuring a mechanical characteristic of the sample, it quantifies the complexity of the
responseAs a varies between zeand one, the character of the Mitthek er function undergoes
a transition between a power law to an exponential relatiorigBiph FZM), as inFigure9. So,
changs in a slide the response along this continuum from a constant, as in a fully elastic sample,
to an exponenti al response, as predicted by
FZ modeland thedistinction between the spripgt and thdinear dashpotDiderent classes of
materials exhibit a nemteger value foe as demonstrated in previous literature. For example, the
value ofa for PMMA, a lightweight thermoplastic often used as a substitute for glass, has been
experimentally determined to be 0.[&7]; likewise,an analysis of brain tissue has determined a

value of 0.6, considerably der to the exponential end of the spectfdf.
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Figurel0. Fractal structure of the springpot element

The springpot may bphysically realizd as a fractal arrangement of viscous branches
whose pattern depends on the specific order of the derivative, such as the stacked sequence
arrangement ifrigure10. As the limit of this pattern approaches infinity, the mechanical analogy
behaves according to the fractional element law. 3¢ngesas a representation of the interplay of

the collectiorof substructures connected by a complicated network of interfadds the sample.

3.5 Experimental Considerations

The experimental verification of this model will be performed on individual cells under
moderate (~30% of the cell height) indentation. This depth is approaching the threshold of
relevance for the applicatioof the SLS model as confirmed by existing literature. This will
contrast the experimental procedure for verification of the GM model, which will be performed at
much higher levels of indentation. Since the FZ model has not previously been applied to
individual cells in combination with Hertzian mechanics, it is prudent to first verify its applicability

on a regime that has been studied extensively using other methods.
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CHAPTER 4

EXPERIMENTAL VERIFICATION (DEEP INDENTATION)

4.1  Sample Preparation and Eeqpmental Setup

MCF10A and MDAMB-231 breast cell lines, respectively representative ofimeasive
and highly invasive breast cancer models, were identified for this study and were purchased from
the American Type Culture Collection (ATCC). The cells averaintained in plastic-25 cm2
culture flasks in standard cell culture medium, which for MBB-231 cells is F12:DMEM
(50:50), 10% fetal bovine serum (FBS), 4 mM glutamine, and penisiitaptomycin (100
Units/ml) and for MCF10A cells is Hams F12:DME(80:50), 2.5 mM Lglutamine, 20 ng/ml
epider mal growth factor ( EGF) , 0.1 ¢eg/ ml cho
hydrocortisone and 5% horse serum. For AFM tests, the cells were harvested, seeded at a density
of 1x1® cells per 12 mrhglass overslips coated with 0.1 mg/mL collagen type IV (Sigma
Aldrich, St. Louis, MO) for 2430 hrs at 37°C in humidified 7% C&8% air atmosphere prior to
the AFM experiments to allow the cells to attach. A buffered HEPES solution was then added to
the coversp samples (final concentration of 13.5mM) to maintain a physiological pH of 7.2 during
testing. The final pH in the culture medium was stable for more than two hours at room temperature
(~24°C), which is considered adequate time for the total duratiandofidual experiment

sessions.
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The AFM experiments were performed with a Dimension Icon AFM with a closed loop
controller (Bruker Corporation, Billerica, MA) integrated with an optical microscope. Olympus
TR400PSA Vshaped SiNi cantilevers (Olympus, Taky Japan) of ~200 e&m
approximate spring constant values of ~0.02 N/m were employed in all AFM experiments; exact
spring constant values were measured via the thermal tuning method. The sharp probes were
modified by attaching glass spheres (D&e i ent i fi ¢, Waltham, MA) of
cantilever free end with twpart epoxy (Miller Stephenson, Sylmar CA), which helped reduce
damage to the cells due to contact. Additionally, the increased contact area between the cell and
the probe redced cell deformation nonlinearity. The exact diameter of the glass sphere and its
attachment location were identified using a HIROX-KIFDO 3D Digital Video Microscope. The
measurements were carried out on single cells in their respective culture medrooma
temperature (24°C) by using AFM contact mofiéh e i ndent ati ons were dor
nuclear region undeoptical control and deep into the cell structure to engage all three major

cellular components: the membrane, cytoplasm, and nucleus.

4.2  Statistical Data Analysis

The indentation and relaxation data were y
leastsquares approach. For a good estimation of the contact point in the indentation region, each
s a mp | e totwarsodiffet Hertz ind¢ation modeiteratively until the dherence in estimated
contact points was below a very small threshBld@ nm). The approximate point of contact was
then used to calculate the maximum indentation depth for each sample, which is a factor in the
relaxaton models.

Thecurveyt ti ng procedure generates a set of ve
statistical information about the cell populati@omparisons were made between both models

27



and both cell populations. The experimental factors do novdthr an assumption of normality
in the distributions, so the statistics reflect changes in the median values of the parameters and do

not omit outliers.
4.3 Results of the SLS and GM Model Application

For both the MCF10A and MDAMVIB-231 cell types, the AFM tests were performedaon
random selectiofrom 2530 single cells for acquiringtressrelaxation curvesCare was taken
with the large indentation depth to avoid puncturing or damaging a cell memlitfranncturing
occurs, the curve exhibits local saw tooth behavior. No such behavior was observed in our data.
The improvements over the SLS model fit were considerable as sh&igunell. In particular,

the conformance to the fast relaxation behavior (corresponding to the shortest time scale) is

excellent.

Force, nN

30 : ‘ ' : :
0 5 10 15 20 25 30
time, s
Figurell. A qualitative comparison of tHeLS and GM fits
Quantitative improvements in fit are demonstrated by a plot of the residuals of the
nonlinear least squares methbdyurel2. Taking both perspectds into account, quantitative and
gualitative, it is apparent that the decrease in overall residual for each sample is due to the better

fit in the early time response.
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Figurel2. Residuals of the nonlinear leasjuares procesgiantitatively show an increase in fit
quality for the MCF10A(a) and MDAVIB-231 (b) populations.

The distributions of relaxed moduli conform to trends observed in previous literature. The

highly invasive line shows a distinctive softening in comparisaidéanoninvasive population.

As shown inFigure 13, the medians differ by 26%, and the MDAMB231 population exhibits a
lower spread.

MCF10A

—
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Figurel13. Distributions of the calculated relaxed moduli for the GM (a) and 8).&0dels
The statistics for the discrete relaxation modes do not exhibit a single unifying trend.

Instead, the degree and direction of the change between populationsnadiet® mode The
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statistics for eachmodeare shown irFigure14 with the elastic modulus for eacmodein the first

column, the viscous coefficient in the second, and the characteristic relaxation time in the third.

MCF10A

MDAMB231

MCF10A

MDAMB231
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Figure14. Modal propertiesalculated by the GM model fit arranged by row

100

Both the elastic and viscoelastic properties of the firatlefollow the opposite trend

predicted by the SLS model. The first elastic modfitughe MDAMB231 line is considerably

stiffer and more viscous than the MCF10A line with percent differences of 60 and 65%,

respectivelyThe time scale for the firshodeis very short where for both populations the median

values are on the order of18. Therefore, thisnodefully relaxes very quickly in the response

Fortunately, this coincidesell with observations of the shape of the response curves.

population$
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The secondmode does not show a statistically significant change between the two

ed naodutus The viscosity, howevedoes increase in the MDAMB231 line by



53%. Again, this is counter to the behavior of the SLS fit. The relaxation times are on the order of
10°, which represents an intermediate period between the fast relaxation bemavibe slow,

exponential response s BY.
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Figurel5. SLS parameter distributions

The thirdmodeis very similar to the results of the SLS shown inFigure 15, which is
unsurprising. Corresponding to the longest time scale included in the model, the characteristic
relaxation time is on the order of 1Ghe same regime as that of the SLS model. Also, the
parameters exhibit the same deaiag trend from the MCF10A to the MBMIB-231 populations.
Elasticity decreases by 18% and viscosity by 2BBém an optimization standpoint, it is entirely
not shocking that the third characteristic time scale matches with the results presented by the SLS
model fit. The majority of the response of every cell lies within its time scale; therefore, in an
attempt to correctly represent the majority of the response, the much simpler SLS model found

optimal solutions when its characteristic time fell into thee region.

The data from this experiment are also displayed in Table 1. Note that the reported values

correspond to the median * standard deviation to preclude any assumption of normality.
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Table 1.Mechanical parameters for degplentation (GM)median + standard deviation)

15tMode 2" Mode
GM Model Er, (Pa) E (Pa) m(Pds) t (s) E (Pa) m(Pds) t(s)
MCF10A 297.6+86.4 43.4+14.4 17.2+£13.2 05+£0.2 774 +£15.1 159.2+84.1 26+15
MDA-MB-231 217.5+67.0 69.3 £25.3 28.5+13.8 04+0.1 76.8+£25.6 243.0+106.0 34+£1.0
SLS Model
MCF10A 170.2+67.15 -- -- -- -- -- --
MDA-MB-231 98.54 + 63.63 -- -- -- -- -- --
39 Mode
GM Model E (Pa) m(kPds) £(s)
MCF10A 1179+ 31.8 3.66 +4.29 28.9+18.3
MDA-MB-231 96.6 + 33.2 2.85+20.0 28.7 + 106
SLS Model
MCF10A 159.4 +34.1 1.57+0.82 12.8 + 4.06
MDA-MB-231 131.0 £49.2 1.38 + 0.61 10.8 +2.14
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CHAPTER 5

EXPERIMENTAL VERIFICATION (MODERATE INDENTATION)

5.1 Sample Preparation and Experimental Setup

Again, the utility of this model was tested on the relaxation response of two human breast
cell populations: MDAMB-231 (highly invasive breast cancer), and MCF10A {mwasive
breast ancer).The cells were purchased from the American Type Culture Collections (ATCC).
The MDA-MB-231 cells were maintainedat & i n a h u mi -95%yai atmoSp¥ereC O 2
in F12:DMEM (50:50) culture medium which contained 10% fetal bovine serum (FBS), 4 mM
glutamine, and penicillistreptomycin (100 Units/ml). The MCF10A cells were grown in

F12:DMEM (50:50), 25 mMtig | ut ami ne, 20 ng/ ml epi der mal

gr

cholera toxin (CT), 10 eg/ ml i nsul i PPEtAFEE0O0 ng/

tests, cells were harvested, plated at a density of°ledl® per 12mrhglass cover slip, and
incubated for 24 hours. Cover slips were initially coated with 0.1 mg/mL collagen type IV (Sigma
Aldrich, St. Louis, MO) to help the cells attach te thlass cover slips. AFM tests were carried
out on single cells in the standard culture medium at room temperatu®).(2buaered HEPES
solution was added to the samples at a ynal

maintain a constamthysiological pH of 7.2 during experiment sessions.

All experiments were conducted with a Dimension Icon AFM (Bruker Corporation,

Billerica, MA). TR400PSA Vshaped silicon nitride cantilevers (Olympus, Tokyo, JapaDpoD
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mm lengths and0.02 N/m nominbspring constants were used. The practical spring constants of

the cantilevers were experimentally measured using thermal noise tuning and were within 20% of
the nominal val ues. The sharp probes were mo
S c i e,Walthgint, MA) ofD10mm diameter onto the cantilever free end with 4pest epoxy

(Miller Stephenson, Sylmar, CA), which increased the total surface contact area and, consequently,
reduced damage to the cells during confHaeir exact radius was identdd using a HIROX KH

7700 3D Digital Video Microscopdhe measurements were performed abmvec h cedrl 6 s n u
regionunder optical control with a constant approach velocitp®inm/sata5 kHz sampling
frequency.The indentation speed was optimized&the most effective representation of a-step

strain response while remaining within reasonable bounds for the AFM control schieene.
maximum indentation forcevas limited to a trigger of % 3 nN whichinduceda ~23 pm

indentation into the cellular sstsuctures.

5.2  Statistics and Curve Fitting

The indentation and relaxation data were y
leastsquares approach. For a good estimation of the contact point in the indentation region, each
s a mp | e towhamsdifigdtHertz indentation modékratively until the dherence in estimated
contact points was below a very small threshBld @ nm). The approximate point of contact was
then used to calculate the maximum indentation depth for each sample, whicht@ infttee
relaxation models.
Thecurveyt ti ng procedure generates a set of ve
statistical information about the cell population. Each parameter distrivdi®nompared against
its parallel in both models (FZ and.S) for both sample populations (MDKB-231 and

MCF10A). The experimental factors do not allow for assumptionof normality in the
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distributions, so the statistics reflect changes in the median values of the parameters and do not

omit outliers.

5.3 Resuts of the SLS and FZ Model Application

pd
o
g
o
L
0 5 10 15
time, s
Figurel6. A qualitative comparison of the SLS and FZ fits
A cursory visual assessment of thaelir e nt model yts for any one

drastic improvements in accuracy made by the implementation of the FZ fmahela qualitative
standpointshown inFigure 16, it is evident that the FZ model effectively reproduced the fast
relaxation characteristic of the sample populations with much higher accuracy than the SLS model.
Figure17 shows a comparison of tliesiduals from the nonlinear fitting procedure indicating a

significant increase in fit quality even for those samples where the SLS model performed

exceptionally poorly.
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Figurel7. Residuals from the nonlinear leasjuares fitting procedure quantify the goodness of
fit for the MCF10A (a) and MDAVIB-231(b) populations

The parameter distributions extracted from the sample population are coherent and support
the relevancy of both visetastic models. For each parameter, the distributions from both models
for both cell populations are compared below. Note that the extended lines on each plot represent
the reasonable span of each distribution, and outliers are marked with symbols.ifitre gfcthe
median line inside of the colored box is indicative of the skew in the distribution.

A comparison of the relaxed modulkgr, conforms to the trends seen in previous
comparative works, where the malignant line exhibits less capacitgdioiual stress. The MDA
MB-231 line shows a 24% decrease in the median relaxed modulus relative to the MCF10A line
in the FZ model and a 42% decrease in the SLS mBdgire18(a)illustrates the distributions of
the data generated by the FZ model Riglire 18(b) shows the distribution from the SLS model.

The most obvious obseation is the lower median values predicted by the FZ model;
coincidentally, this is also the most significant. Both FZ distributions are shifted to lower values
and are more symmetric than the SLS counterparts. Theeeatowerbounds indicated by the

FZ model insisean extraordinarily small capacity for resisting further deformation as time goes on.
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Incidentally, this implies that the fractional behavior of the cell populations becomeslikguad
an indefinitely long sample time, more so for theigrant cell line as indicated by the lower first

guartile and median metrics.

Figure18. Distributions of the relaxed moduli from the FZ (a) and SLS (b) models

A curious effect to the increase in overall fit quality is a significant increase in the first
elastic parameteE:. Because the FZ model successfully captures relaxation at the fast time scale
(within the first few seconds of the application of force)carrectly models the initial force
between the tip and sample. Recall that this effect is quantifieguation (23and evident from
the inset ofFigure 16. Otherwse, the trend captured in the SLS model is paralleled in the results
of the FZ modelAgain, the MDAMB-231 population exhibits softer elastic qualities than the

MCF10A by 54% in the FZ model and 53% in the SLS model, shoWigure19.
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