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ABSTRACT 

 

 

Noble metal nanoparticles were synthesized by either nucleation in solution or dewetting from 

thin metal films, and further oxidized to create a thin surface oxide shell. A detailed analysis of 

surface oxidation of noble metal nanoparticles is presented in this dissertation. This study 

allowed for utilizing these nanoparticles with controlled surface oxide to result in the growth of 

graphene shells around noble metal nanoparticles in a chemical vapor deposition process. 

Oxidation kinetics of noble metal nanoparticles was studied by combining electron microscopy 

and x-ray photoelectron spectroscopy techniques. This was further correlated with the growth of 

graphene shells and thicker oxide shell resulted in larger number of graphene layers. In regard to 

explore their applications, graphene shells encapsulated nanoparticles were demonstrated as a 

unique plasmonic substrates and catalytic substrates. Plasmonic modeling was done by discrete 

dipole approximation, simulated and explored the optical properties of graphene shells 

encapsulated noble metal nanostructures. This approach of graphene shells growth around noble 

metal nanoparticles was further exploited to understand the role of catalytic noble metal 

morphology and thus, detailed investigation of the CVD growth of graphene shells around 

segmented nanowire system was conducted. It was observed that graphene shells were grown 

around metal nanowires. However, the melting of the nanowires during the shell growth process 

must be carefully controlled. This further lead to complex nanowire heterostructures and their 

incorporation into polymer for bio-applications as demonstrated in this dissertation.  
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CHAPTER 1: INTRODUCTION 

1.1 Noble Metal Nanoparticles-Graphene Heterostructure 

A particular interest in nanomaterials heterostructure is encapsulating nanoparticles in a thin 

shell or cage of other components. The purpose of growing shell can be protection of core 

materials or aim to further functionalization.
1
 And the shell materials vary from polymer, metal, 

to carbon or oxide materials.
1-4 

Thin shell is needed for noble metal nanoparticles to prevent 

nanoparticle aggregation, meanwhile shell should not hinder the core materials to be optically or 

electronically active. 
5
 The problem to encapsulate nanoparticles in polymers and oxide shells is 

attributed to permeability and stability of encapsulating materials, as well as the requirement of 

precise control over the pH and ionic strength of nanoparticle solution.
6,7

 A promising approach 

is the encapsulation of noble metal nanoparticles in a single crystalline graphene or carbon shells 

that will uniquely combine properties of both components in one system. Such a graphitic shell 

can act as a superior surface passivant, and the shell with appropriate thickness may enable the 

core materials exhibit their unique properties in various applications. 

1.1.1 Dewetting of gold film into gold islands 

Gold nanoparticles have various applications ranging from cancer cell imaging to low 

temperature oxidation of CO.
8,9

 Size and shape of gold nanoparticles are critical for their 

applications, therefore the morphology control of gold nanoparticles are of great technological 

interests. Monolayer of nanoparticles/islands on substrates can be obtained upon annealing of 

thin metal films, which is referred to as solid state dewetting process and driven by minimization 
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of surface and strain energy. The optical properties of gold nanoparticles/islands formed by this 

dewetting process were studied by Rubinstein and his co-workers.
10-12

 They prepared gold island 

films by vapor deposition on transparent substrates (glasses), analyzed the 3D morphology of 

gold islands by scanning electron microscopy (SEM), cross-sectional transmission electron 

microscopy (TEM), and atomic force microscopy (AFM) cross-sectional profilometry. One 

particular interest of Rubinsteinôs group is studying the localized plasmon properties of gold 

island film on glass. The variability of size and shape of gold islands, as well as distance between 

them are provides effective means of tuning the localized surface plasmon resonance (LSPR). 

Meanwhile the stability of gold islands was increased by partially embedding them in the glass. 

At the beginning of dewetting, voids forms by various mechanisms such as thermal grooving at 

grain or twin boundaries, vacancy nucleation at the interface of film/substrate, or due to 

heterogeneities in the substrate (dust particles or other impurities). As annealing continues, 

cavity is expected to grow along the area of high stress such as grain boundaries. During the 

growth of hole, the removal of material from hole-border took place and formed pile-up 

materials around the hole. Since more materials need to be moved during growth of hole if it 

remains circular, growth of branched-hole was more often observed, which preferably takes 

place at the tips of holes. Given enough time and temperature, the metal film will reshape 

continuously to minimize surface energy.  

1.1.2 Methods for synthesizing carbon-graphene encapsulated noble metal nanoparticles 

Past research has indicated significant interest in encapsulation of transition-metal nanoparticles 

with carbon shells using a chemical vapor deposition (CVD) approach.
13

 However, it has been 

observed that in the CVD method, transition-metal nanoparticles not only catalyze growth of a 
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graphene shell but also of carbon nanotubes (CNTs) and amorphous carbon.
14

 On the other hand, 

noble metal nanoparticles are difficult to be encapsulated in graphitic carbon shells by the CVD 

approach due to the low carbon solubility in the former.
15

 Instead, TEM based electron 

irradiation of gold nanoparticles (AuNPs) dispersed on carbon grids has been utilized to achieve 

graphitic carbon shells around AuNPs.
16

 However, this process involved high growth 

temperatures under electron irradiation, and the resulting carbon shells acted like a pressurized 

chamber with enough surface tension to lead to the ejection of the encapsulated nanoparticle.
16-18

 

In addition, this approach did not allow for the recovery of hybrid nanoparticles from the TEM 

grids and severely limits their applications. Polymer coatings on oxidized AuNPs have been 

converted into carbon shells,
19

 but the use of polymer resulted in amorphous carbon and required 

long processing duration and cleaning of hybrid nanoparticles to eliminate the remaining 

polymer or impurities. 

Carbon nanocapsule and CNT have been produced using palladium nanoparticles (PdNPs) 

though arc discharge. 
20

 ñWormlikeò palladium-carbon heterostructure has been fabricated by arc 

treated PdO/graphite mixture. 
21

  Also, low temperature (~200 
o
C) hydrothermal process has 

been applied to synthesize palladium-carbon core/shell heterostructures.
22

  The carbon shells 

fabricated in above methods are usually thick and disordered. Hollow porous carbon shells with 

mesopore and micropore have been synthesized and employed to protect palladium nanoparticles 

as catalyst for aerobic oxidation of alcohols.
23

 The hollow core-shell heterostructures were 

fabricated by removing the intermediate siliceous layer between PdNPs and carbon layers. 

Ge and coworkers utilized electron irradiation synthesized fullerene-like carbon shells around 

platinum nanoparticles (PtNPs).
24

 However, this process requires high temperature (1245 
o
C) to 



 

4 

 

form Pt-amorphous carbon specimens, and graphitic shells would only form on small platinum 

nanoparticles (less than 5 nm) by irradiation. A commonly used method to obtain nanostructured 

carbons is applying templating procedures using silica-based molds, which involves coverage or 

filling of the surfaces of the molds with carbon sources followed by carbonization under inert or 

reductive conditions, and subsequent removal of the molds using chemical etching.
25,26 

A more 

convenient approach for the preparation is to incorporate PtNPs in hollow carbon nanospheres 

through the photocatalytic reaction of TiO2 nanoparticles in deaerated aqueous media, where 

TiO2 nanoparticles not only act as molds of hollow carbon but also induce simultaneous 

deposition of PtNPs and phenolic polymers by photocatalytic reduction and oxidation of 

platinum precursor and phenol, respectively.
27

  

Our group previously demonstrated a simple CVD approach to grow carbon shells encapsulated 

AuNPs.
1,28,29

 Since these carbon shells have interlayer spacing consistent with the c-axis spacing 

of the graphene layers, we also referred to them as graphene shells encapsulating AuNPs 

(GNPs). The approach utilized commercially bought AuNPs patterned on a silicon (Si) substrate 

that were plasma oxidized to form surface-oxidized AuNPs. The latter served as the catalyst for 

the growth of graphene shells in the presence of a hydrocarbon source at temperatures between 

600 and 700 °C. The graphene shell thickness was controlled (~1ī20 nm) by varying growth 

times, which indicated the flexibility  of our CVD method. Additionally, the rich surface 

chemistry of the carboxylic-derivatized graphene shells provided an interesting opportunity for 

bio-analysis and sensing. The most critical step in the formation of GNPs is the pre-CVD plasma 

oxidation of AuNPs to result in surface gold oxide. It has been observed that such plasma-

oxidized AuNPs inhibit the growth of CNTs in a CVD process.
30

 It was later demonstrated that 
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surface-oxidized AuNPs resulted in graphene shells encapsulating the core AuNPs. This makes 

the approach suitable to grow impurity-free GNPs. However, a detailed understanding of the 

graphene shells growth mechanism, plasma oxidation kinetics of AuNPs, effect of structural 

defects in the AuNPs on the graphene shells growth, and large area growth of GNPs remains 

unexplored and unclear. 

1.1.3 Oxidation kinetics of noble metal nanoparticles. 

The formation of a surface oxide shell on noble metal nanoparticles is essential for the graphene 

shells evolution. For this reason, the understanding of the mechanisms and kinetics of oxidation 

is highly desirable. In general, the growth of oxide layers is controlled by diffusion of ions and 

electrons under the influence of gradients of their concentrations and self-generated electrical 

potential (during anodic oxidation, the oxidation can be facilitated and/or driven by external 

potential). 

Cabrera and Mott (CM) proposed a generic model when electric field acts as dominate barrier in 

diffusion. The CM model states as follows:
31

 oxygen molecular or dissociative adsorption at the 

oxide surface is accompanied by the formation of surface states located (in the absence of the 

field) above the oxide valence band and below the metal Fermi level, Eo < EF (where Eo is oxide 

valence band and EF is the metal Fermi level). During oxidation, electron tunneling from the 

metal to vacant surface states, which results in the appearance of charges on the oxide interfaces 

and accordingly in shift of the energy of these states up to the Fermi level. It generates uniform 

field in the oxide film as given: 

eLEELV oF /)(/0 -¹=e                                                     (1.1) 
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where L is the thickness of oxide layer, and e is the absolute value of the electron charge. The 

control step of the oxide growth is assumed to be activated jumps of metal ions located in defect 

sites on the metal-oxide interface. The electron field is considered to be strong that the jumps are 

practically irreversible. The rate-limiting jump rate constant is represented as: 

)/exp()/exp( 000000 TLkVqbkTkqbkk B

o

B

o == e                                   (1 .2) 

In this regard, ok0 is the rate constant for the case without field, LVqb /00 is the field-induced 

decrease of the jump activation energy, q is the ion charge, and b0 is the distance between the 

positions of the corresponding potential well and barrier. The growth kinetics is given by: 

)/exp(/ 0000 TLkVqbpkadtdL B

o=                                        ( 1 .3 ) 

where a0 is the distance between nearest-neighbor metal layers, and p is the fraction of metal 

atoms located in defect sites of the interface. If we set pkau o

00=  and TkVqbA B/00= , Equation 

1.3 can be rewritten as: 

)/exp(/ LAudtdL =                                        ( 1 . 4 ) 

Usually, the scales of qb0V0 and kBT are 10
-1

 and 10
-3

, respectively, and the scale of A is about 5-

10 nm, thus for thin oxide films, A/L > 1. With this condition, integrating Equation 1.4 yields: 

utLAAL =- )/exp()/( 2
                                    ( 1 . 5 ) 

Based on these assumptions, the CM model is applicable for describing the formation of 

relatively thin oxide films (up to about 5-10 nm). To apply CM theory to describe oxidation of 

nanoscale supported metal particles, we assuming a spherical geometry with the radius R and 
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oxide shell of thickness L. It implies that the electric field inside a supported particle has a 

spherical symmetry, assuming the support is inert and the charge transfer between the support 

and the particle is negligible. Thus The potential in the oxide (at RrLR ¢¢- , r is the radial 

coordinate) is 

C
r

B
rU +=)(                                                    ( 1 .6 ) 

where B and C are constants. Since V0=U(R-L)-U(R), we get: 

L

LRRV
B

)(0 -
=                                                 ( 1 .7 ) 

The electric field near the metal-oxide interface is accordingly given by: 

LLRe

REE

LLR

RV

LR

B F

)(

)(

)()(

00

2 -

-
¹

-
=

-
=e                                         (1 .8 ) 

Submit Equation 1.8 aboute into Equation 1.2 and 1.3, we can rewrite Equation 1.4 as: 

)
)(

exp(/
LLR

AR
udtdL

-
=                                                       (1.9) 

There are other expressions of CM model. For instance:
32

  

tLL
R

LLLf W=---= )(
3

1
)(

2

1
)(

3

0

32

0

2                                                  (1.10) 

where L0 is the original thickness and ɋ is a constant quantity related to the built-in potential 

across the oxide and ionic mobility. It should be noted that the oxidation in the CM is insensitive 

to the morphology of oxide layer because the oxidation rate is controlled by the processes 
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occurring on the interface. However, the CM model is not applicable if the oxidation is 

accompanied by the formation of cracks in the oxide film. 

Considering the fact that oxygen diffusion in the oxide layer is generally the rate-determining 

step in metal oxidation, and the volume of the oxidation product is usually larger than volume of 

the metal, Valensi-Carter model is also utilized to describe oxidation kinetics.
33,34

 For a spherical 

particle, the rate of thickening of the oxidation product was assumed inversely proportional to its 

thickness: 

LkdtdL // =                                                                (1.11) 

where k is constant. Integration of Equation 1.11 gave: 

ktL 22 =                                                                 (1 .12) 

The volume of unreacted material at time t was given as: 

)1(
3

4
)(

3

4 33 xRLRV -=-= pp                                                               (1.13) 

where x is the fraction of the original sphere which has reacted, or so-called reacted ratio. Thus, 

])1(1[ 3

1

xRL --=                                                                       (1.14) 

Substituting Equation 1.14 into 1.12, we obtained 

KtRktx ==-- 223/1 /2])1(1[                                                                (1.15) 
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The above analysis needs to be adjusted because of two reasons: First, Equation 1.11 is for the 

reaction of a plane surface. But the rate of thickening of a spherical shell of the reaction product 

must depend upon the ratio of the areas of the outer to inner surfaces. Secondly, Equation 1.13 is 

accurate only when the volume of sphere particle doesnôt change after oxidation, but the reality 

is oxide usually has larger volume than original metal volume. Considering above two reasons, 

Equation 1.15 can be adjusted to: 

2

0

3/23/2 /)1(2)1)(1(])1(1[ Rktzzxzxz -+=--+-+                                             (1.16) 

Or can be rewritten as: 

Ktzzxzxzxf =----+-+= )1/(])1)(1(})1(1[{)( 3/23/2
                                            (1.17) 

where K is a kinetic constant, and z is the volume of oxidation product formed per unit volume of 

reactant consumed. 

1.2 Plasmonic Modeling for Noble Metal Nanoparticles and Core/Shell Heterostructure 

1.2.1 Plasmonic background 

Surface plasmon resonance (SPR) or dipole plasmon resonance is the collective oscillation of 

valence electrons in a solid stimulated by incident light (as shown in Figure 1.1). When the 

frequency of incident light photons matches the natural frequency of surface electrons oscillating 

against the restoring force of positive nuclei, the resonance condition is established.
 35

  SPR in 

nanostructures is known as localized surface plasmon resonance (LSPR), which greatly influence 

the optical properties of metallic nanostructures.
36

 The shape, size and composition of the 

nanostructure, as well as the optical properties of the surrounding dielectric, are parameters that 

greatly influence the spectral location of the LSPR. A very interesting phenomenon is that the 
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induced electromagnetic field associated with the LSPR is greatly enhanced at the 

metal/dielectric interface, this is the basis for various types of surface enhanced spectroscopy, 

such as surface enhanced Raman scattering (SERS). Depending on the geometry and size of 

nanostructure, the near field intensities will be enhanced to different degrees, while the 

extinction bands will be shifted to different wavelengths. 

The scattering and absorption of spherical particles of arbitrary size, or infinite cylinders can be 

solved by Maxwellôs equations.
37

 For complicated geometries of nanostructures, approximations 

need to be made in order to obtain an accurate result. The discrete dipole approximation (DDA) 

is one such method. 
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Figure 1.1 Schematic of plasmon oscillation for a sphere, showing the displacement of the 

conduction electron charge cloud relative to the nuclei. 
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1.2.2 Discrete dipole approximation and visualization of near field 

DDSCAT is an open source software package developed by Draine and Flatau.
38

 It is capable of 

calculating absorption and scattering properties of target through the discrete dipole 

approximation method. The approach to model a particleôs plasmonic resonance is to divide this 

particle into a finite array of polarizable points (dipoles), calculate scattering and absorbance 

properties of these separated dipoles, and the interactions between them. The accuracy of this 

method is dependent on the number of dipoles that represents the target object, which is only 

limited by the computational power available. Two main criteria the validity of the DDA have to 

meet: 

1. The equation |m|kdÒ1 (where m is the complex refractive index, k is a function of the 

incident wavelength, and d is the dipole spacing) must be satisfied, which means the 

lattice spacing d is small enough compared to the wavelength of the incident light striking 

the target. 

2. The target object is accurately depicted, so either d must be small enough or dipole 

number N is large enough. 

An important step of DDA is the calculation of effective radius. If we set V be the actual volume 

of the target, which is represented by an array of N dipoles, located on a cubic lattice with lattice 

spacing d, then we get: 

3NdV=                                                                           (1.18) 

Thus the size of the target, so-called the effective radius is given by: 

3/1)4/3( pVaeff ¹                                                              (1.19) 
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When building irregular geometries or geometries which are consist of multiple shapes or 

components, it becomes difficult to construct the target and calculate the effective radius. Since 

DDSCAT allows us to create custom target geometries and arrays which would be difficult or 

impossible otherwise, we firstly use open source program ñAutodesk 3ds Maxò to build 3-

dimensional target, then convert it into ñshape.datò file through open source programs 

ñMeshLabò and ñpoint-inside-polyhedronò. DDSCAT can identify ñshape.datò file and calculate 

scattering and absorbance accordingly. Also, the effective radius can be obtained according 

through the approach we built the target. It should also be noted that, DDSCAT sets the incident 

light direction is through x-axis, so we can manipulate the orientation of target to simulate the 

cases when incident light hit the nanostructure from different angles. 

It is necessary to check if geometries we built are representing our targets before we process the 

DDSCAT calculation. Another open source program called ñLiteBilò is very useful to visualize 

our ñshape.datò file to see if it is correct. LiteBil is a software program developed by the 

Laboratory of Paper Coating and Converting at the Abo Akademi University and is specifically 

made to be compatible with the DDSCAT package. It can create a three dimensional 

representation of the shape which can be manipulated in space using the mouse. 

To predict the SERS effect of nanostructure, DDSCAT package is capable to calculate the near 

field of our nanomaterials. And the visualization of near field enhancement can be achieved 

through an open source program ñPython(x,y)ò. It is a scientific and engineering development 

software for numerical computations, data analysis and data visualization based on Python 

programming language, Qt graphical user interfaces and Spyder interactive development 
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environment. The three dimensional visualization image obtained from Python(x,y) can be 

dragged by mouth, in that way the near field enhancement can be presented straightforwardly. 

1.3 Nanowires Heterostructures 

1.3.1 Synthesis of metal nanowires 

The design and fabrication of nanoscale/mesoscale structures have significant impacts on 

technologies such as chemical sensing and drug delivery.
39-41

 Various approaches of one 

dimensional (1D) nanostructures fabrication have been reported, including chemical vapor 

deposition, photolithography, and electrodeposition.
42-45

 There is an increasing interest on 

collective behavior of nanostructures, which related to a large ensemble of nanostructures into 

integrable functional units. The properties of the system as a whole may be fundamentally 

altered and more complicated than the properties of the elements in isolation, as it involves 

unique interactions of a group of nano-elements acting together.
46

 Arrays of highly ordered and 

uniform nanostructures are desirable to achieve maximum collective resonance effects. 

Producing mass-amount of nanostructure arrays is a challenge to the nano-fabrication technique. 

Top-down approach like electron beam lithography is difficult to achieve that purpose because of 

its low throughput due to its long exposure time, small field size, and high cost of equipment. On 

the other hand, the bottom-up approach that using the membrane with aligned channels as a 

template for nano-fabrication can be applied to synthesize arrays of nanostructures. 

Electrodepositing nanowires using porous membrane as template is an effective method to 

synthesize highly ordered metallic nanowires.
47,48 

Template synthesis through electrochemical 

deposition is a versatile and particularly simple approach. Nanowire arrays can be obtained by 

filling the porous template that contains a large number of uniform, straight cylindrical holes 
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with controllable narrow size distribution. This electrochemical approach is also capable to make 

specific individual segments along the length of the nanowire thus result in so-called ñaxially 

heterostructured nanowiresò,
49

 and the combination of different segments nanowires holds 

promising potential in design of complicated nanostructures with multi-functions.
50-52 

Two types of template are commonly used for nanowires fabrication: polycarbonate (PC) and 

anodic aluminum oxide (AAO) membranes. The channels inside these membranes are aligned 

almost parallel to each other, and perpendicular to the surface of the membrane without 

interconnections between adjacent pores. The pore density of an AAO membrane is about 10
10

-

10
11

 pores/cm
2
, whereas for a PC membrane, the pore density is two orders of magnitude lower 

than that of AAO, about 6×10
8
 pores/cm

2
.
53

 Before electrodeposition, a metallic layer serving as 

back electrode is evaporated or sputtered onto one side of the membrane. After mounting the 

membrane into electrodeposition cell, nanowires can be filled using a conventional potentiostat 

method. After the deposition was done, the PC membrane can be dissolved in 40 
o
C 

dichloromethane (Cl2CH2), rinsed in fresh dichloromethane, chloroform, and ethanol,
54

 whereas 

AAO membrane can be dissolved in sodium hydride (NaCl) or potassium hydride (KCl). 

1.3.2 Synthesis and applications of nanowire heterostructures 

Nanoparticles are usually attached with wires to obtain higher loading amount in practical 

applications. More importantly, wires can be arranged into two-, or three-dimensional structures 

as building blocks for nanodevices. Nanowires heterostructure can be classified according to the 

morphology of different components decorating on the nanowire bone. Hybrid nanowires with 

axial direction, radial direction multi-segments, branched heterostructures, nanowires decorated 
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with nanoparticles, and core-shell nanowires have been synthesized, with examples shown in 

Figure 1.2.
49
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Figure 1.2 Schematic and examples of nanowire-based heterostructures showing (A) Axial-

multisegment CdTe-Au-CdTe nanowire sensors for the detection of DNA molecules { Reprinted 

with permission from (Multisegment nanowire sensors for the detection of DNA molecules). 

Copyright (2008) American Chemical Society} ; (B) Branched silicon nanowires { Reprinted with 

permission from (Rational Growth of Branched and Hyperbranched Nanowire Structures). 

Copyright (2004) American Chemical Society} ; (C) Au nanoparticles decorated on Pb nanowires 

{Reprinted from Elsevier, 25, Wang, H.; Wang, X.; Zhang, X.; Qin, X.; Zhao, Z.; Miao, Z.; 

Huang, N.; Chen, Q., A Novel Glucose Biosensor Based on the Immobilization of Glucose 

Oxidase onto Gold Nanoparticles-Modified Pb Nanowires. 142-146., Copyright (2009)} ; (D) 

Intrinsic silicon core/SiOx/p-type silicon shell nanowire, the oxide layer is too thin (<1nm) to be 

distinguished in the TEM image {Reprinted by permission from Macmillan Publishers Ltd: 

Nature (Lauhon, L. J.; Gudiksen, M. S.; Wang, C. L.; Lieber, C. M., Epitaxial Core-Shell and 

Core-Multishell Nanowire Heterostructures. Nature 2002, 420, 57-61.), copyright (2002)}
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For axial heterostructures, multisegment nanowires comprise several different material 

compositions or phases along the length. Figure 1.2A shows electrochemical deposited 

nanowires with CdTe-Au-CdTe multisegment in axial direction.
55

 After deposition, the gold 

segment was functionalized with thiol group (-SH) and utilized for binding single strand DNA 

(ssDNA) fragments. CdTe segments at both ends served to modulate the equilibrium Fermi level 

of this heterojunction device. Such multisegment nanowires could lead to the fabrication of 

sophisticated and specific nanosensors by selective functionalization of individual segments. 

Figure 1.2B presents branched silicon nanowires.
56

 The branched structure was achieved through 

a multistep nanocluster-catalyzed vapor-liquid-solid (VLS), and the branch diameter and density 

were controlled by the diameter and density of gold nanocluster. Branched nanowires provide 

another approach for increasing structural complexity and enabling more functional surface 

areas.
57

 Nanowires can also be utilized as structural material decorated with other composite 

nanoparticles forming heterostructures.  

Figure 1.2C shows gold nanoparticles decorated on lead (Pb) nanowires as glucose sensors.
58

 Pb 

nanowires were fabricated by an L-cyteine-assisted self-assembly route and functioned with thiol 

group, gold nanoparticles were incorporated onto the nanowire surface through SH-Au bond. 

The result nanocomposite exhibited an excellent electrocatalytic activity and high sensitivity 

(135.5 µA mM
-1

 cm
-2

) of glucose with long-term stability. Core-shell nanowires formed by the 

growth of crystalline overlayers on nanocrystals can enhance emission efficiency.
59

  

Figure 1.2D exhibits intrinsic silicon /SiOx/amorphous p-type silicon multi-shell nanowires.
60

 To 

achieve this core/multi-shell heterostructure, single-crystal intrinsic silicon core-wires were first 

prepared by gold nanocluster directed axial growth from chemical vapor deposition (CVD), 
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using silane as the silicon source. The oxide layer was grown at 450 
o
C using oxygen and silane. 

Silicon shells (p-type) were then deposited using silane and 100 ppm diborane helium where the 

shell thickness was directly proportional to the growth time. The resistivity of these multi-shell 

nanowires is dominated by the amorphous p-type silicon shell. 

1.4 Graphene Encapsulated Nanowire Heterostructure 

Graphene is a carbon material consisting of planar monolayer of hexagonal sp
2
 hybridized 

carbons.
61

 It attracts tremendous research interests in recent years due to its unique properties 

such as mechanical flexibility
62

 and thermal/chemical stability,
63,64

 which make itself an ideal 

two-dimensional reinforcing component for hybrids or composite materials that possessing an 

extremely large surface area. Since graphene was unexpected separated from natural graphite by 

micromechanical drawing,
65

 various synthetic methods have been developed for the mass-

production of highly functional graphene such as chemical etching,
66

 graphene oxide reducing,
67

 

and CVD growth.
68

 Among those methods, oxidative exfoliation of naturally abundant graphite 

and subsequent reduction offers a highly efficient route to producing chemically functionalized 

graphene, whereas CVD growth can provide more compact heterostructures between graphene 

and other components. 

Graphene can be wrapped on self-assembled biomolecules to form graphene encapsulated 

nanowire heterostructure. Han et al. demonstrated a straightforward hybrid assembly of 

diphenylalanine/graphene core/shell nanowires by single-step solution processing.
69

 

Diphenylalanine is known as the structural motif for the ɓ-amyloid associated with Alzheimerôs 

disease;
70

 it is capable to self-assemble into highly stable nanoscale morphologies such as 

nanotubes,
 70

 nanowires,
71

 and nanoribbons.
72

 They first prepared an aqueous graphene oxide 
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dispersion following a modified Hummers method, which followed by chemical reduction with 

hydrazine and formed aqueous dispersion of reduced graphene. The peptide/graphene core/shell 

nanowires were created immediately, as soon as an organic peptide solution (100 mg/mL 

diphenylalanine in 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) solution) was diluted in that aqueous 

graphene dispersion under mild mechanical shaking.
69

 They found that the intermolecular 

interaction governing that marvelous core/shell assembly was varied by the pH of the assembling 

solution. The core/shell hybrid assembly only occurred in the suitable pH range in (3.7~5.4), and 

the thickness of graphene shell was tunable with pH variation. Han and co-workers tested the 

electrical conductivity of an individual core/shell nanowire by I-V measurements, and generated 

a hollow network of graphene shells by thermal calcinations (400 
o
C for 20 min) of peptide cores 

of highly entangled core/shell nanowires. This graphene shells network could be employed as a 

supercapacitor electrode with remarkable performance. 

Besides self-assembled biomolecules, metal nanowires can also be encapsulated in carbon shells. 

Synthesis strategies of metal/carbon core/shell nanowire heterostructure can be classified into 

following ones: Filling CNT core with metal by electrochemical reactions or thermal 

diffusion;
73,74

 surface coating of metal nanowires with carbon shells by hydrothermal 

synthesis;
75,76

 and fabricating metal/carbon core/shell heterostructure through chemical vapor 

deposition applying metal and carbon sources.
77-79

  

In case of filling CNT core with metal through electrochemical reaction, CNTs were prepared 

firstly and acted as templates for nanowire formation. Copper ions can diffuse into the CNT 

pores and onto the outer surfaces, and then turn into metallic copper at high temperature in the 
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presence of the carbon nanomaterials, result in the coverage of copper in parts of the pores and 

the surfaces of CNT.
73

 

Filling CNT core through thermal diffusion is achieved by heating high quality purified CNTs 

and metal powder under high vacuum and inert environment, thus metals of low sublimation 

temperatures can vaporize to form thin nanowires within the core of CNTs through capillary 

action.
74

 These nanowires can be completely protected from oxidation and structural 

decomposition by surrounding walls of CNTs.  

The core/shell nanowires formed through hydrothermal reduction/carbonization in the presence 

of surfactant acting as the structure-directing agent by hydrothermal treatment.
76

 In this 

approach, morphology of metal nanowires can be maintained, but the obtained carbon 

nanostructures are usually disordered.  The chemical vapor deposition approach, on the one 

hand, can use bottom-up process to grow core/shell heterostructures.
77,78

 On the other hand, 

metal nanowires can act as template for carbon precursor through chemical vapor deposition 

process.
79

  It should be noted that, the product of core/shell nanowire heterostructures 

synthesized by chemical vapor deposition usually undergoes a significant morphological change 

(difficult to maintain ordered morphology) due to nanowiresô Rayleigh instability under 

graphene growth conditions. 

1.5 Nanowires-CNT Heterostructure Synthesis and Applications 

Aligned CNTs can be produced by chemical vapor deposition, in which the outer diameter of 

CNTs is determined by the diameter of the catalyst particle.
80

 
81

 The arrays of aligned CNTs with 

uniform diameters and periodic arrangements are generally fabricated using AAO template by 

chemical vapor deposition.
82

 In this case, not only the diameter of CNTs can be controlled, but 
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also the site density (number of CNTs per unit area) is tunable depending on the density of AAO 

channels. 

Nanowire-CNT heterostructures attract great research attention because of their unique 

properties. For instance, one dimensional metal/CNT heterojunctions with Ohmic or Schottky 

current-voltage (I-V) characteristic are building blocks in nanoelectronics, since planar 

metal/semiconductor heterojunctions are building blocks in microelectronics.
83

 

Luo et al. synthesized ordered vertical arrays of Ni/multiwalled CNT (MWCNT)/amorphous 

CNT (a-CNT) heterojunctions, which consist of a nickel nanowire, a MWCNT, and an a-CNT 

connected end to end, where the MWCNT is semiconducting and two Schottky contacts exist at 

the two ends of the MWCNT, respectively.
84

 They measured and analyzed the I-V characteristics 

of the heterojunctions embedded in the arrays by a conductive AFM. It was found that although 

the long a-CNT segments would bury some electrical signals of the Schottky contacts in 

heterojunctions, the Schottky contacts in the other heterojunctions played a central role and made 

the corresponding heterojunctions possess rectifying I-V characteristics. 

Carbon nanotubes have also been used as electrodes for supercapacitors because of their 

excellent electrical properties and high surface areas.
85,86

 However, CNT based supercapacitors 

have their own problems.
87

 One of the major issues is the high contact resistance between the 

electrode and the current collector which limits their performance.
86 

The high contact resistance 

could be lowered by growing CNTs directly on to a conductive substrate, which act as current 

collector. Ajayan and co-workers fabricated ultra-high power supercapacitors by using multi-

segmented CNT/Au nanowire hybrid structures as electrode, where both the CNT electrode and 
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current collector gold nanowires are integrated into a single nanostructured wire thus resulting in 

excellent performance of the supercapacitors.
88

 

The combination of nanowire and CNT provides broader capabilities and wider functionalities. 

Ajayan et al. demonstrated that appropriately designed hybrid nanowire/CNT heterostructure can 

be used to generate structures that can respond to their environment and be manipulated through 

various external stimuli.
89

 Their approach is based on the manipulate composition of hybrid 

nanowires consisting of multiple segments with hydrophobic carbon nanotubes on one end and 

hydrophilic metal nanowires on the other. Thus, with the change of hydrophiy of outer 

environment, the nanowire/CNT hybrid can exhibit different self-assemble behavior. It should be 

noted that these kind of materials are toxic if been directly implanted into human body, so it is 

necessary to consider to encapsulate these hybrid materials into bio-friendly materials, for 

example hydrogels, which is discussed in next section. 

1.6 Hydrogel and Nanowires/Nanotubes-Hydrogel Heterostructure 

1.6.1 Hydrogel synthesis and properties 

Hydrogels are hydrophilic polymers in their crosslinked forms, which can absorb a large amount 

of water but meanwhile not dissolving due to their network of polymer chains.
90

 Hydrogels have 

demonstrated great potential for biological and medical applications because of their high water 

content and biocompatibility. Natural hydrogel can be derived from polymers such as collagen, 

hyaluronic acid (HA), fibrin, alginate, agarose, and chitosan. Collagen, hyaluronic acid, and 

fibrin can be obtained from various components of the mammalian extracellular matrix. 

Alternatively, alginate and agarose are derived from marine algae sources, while chitosan is 

derived from chitin. 
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Hydrogels can also be fabricated through various chemical methods. Synthesized hydrogels are 

more appealing to researchers because their networks can be designed and synthesized with 

molecular-scale control over structure, for instance, crosslinking density, thus obtain tailored 

properties such as biodegradation, mechanical strength, chemical and biological response to 

stimuli. Some widely studied neutral synthetic hydrogels can be generated from derivatives of 

poly(ethylene glycol) (PEG), poly(hydroxyethyl methacrylate) (PHEMA), and poly(vinyl 

alcohol) (PVA). 

PEG hydrogels are nontoxic, non-immunogenic, and widely used for biomedical applications. 

They can be synthesized by varied methods to covalently crosslink PEG polymers. Among 

which, photo-polymerization using acrylate-terminated PEG monomers is a particularly 

appealing approach of crosslinking PEG chains. PEG is inert to most biological molecules such 

as proteins, so normal PEG hydrogels are passive constituents of the cell environment. However, 

PEG hydrogels can be modified through numerous methods to make them into versatile 

templates for many subsequent conjugations. For instance, peptide sequences can be 

incorporated into PEG hydrogels; or PEG polymers can be chemically modified by formation of 

copolymers with other materials to induce degradation or modify cell adhesion.  

PHEMA hydrogel is well known as a material of making contact lenses and drug delivery. 

PHEMA has attractive properties include its optical transparency, stability in water, and its 

mechanical properties. It also can be modified through peptide functionalization and 

copolymerization to achieve desired properties.  

PVA hydrogels are stable, elastic gels that can be formed by both physical and chemical 

crosslinking methods. Physical method like repeated freezing and thawing process is commonly 
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used. The physically crosslinked PVA hydrogels are biodegradable and can be used for 

biomedical applications. Also, PVA can be crosslinked through the use of difunctional 

crosslinking agents such as glutaraldehyde, acetaldehyde, and formaldehyde. For chemically 

linked PVA hydrogels, if they are used as biomedical materials, it is critical to remove residual 

crosslinking agent from the hydrogel, as the release of toxic residue in the body would have 

undesirable effects. Other methods of chemical crosslinking include utilizing of electron beam or 

gamma irradiation which would not leave behind toxic agents. 

Environmentally responsive hydrogels attract special attention from researchers due to their 

capability of sensing and responding to changes to external stimulation such as pH, pI, 

temperature, and specific analytes. These environmental responses are attributed to chemical 

structure of the polymer network. For pH sensitive hydrogels, their polymer networks contain 

weakly acidic or basic pendent groups (e.g. -COOH), which can be ionized during water 

sorption, depending on the solution pH and ionic composition. Common ionic polymers include 

poly(acrylic acid) (PAA), poly(methacrylic acid) (PMMA), and polyacrylamide (PAAm). These 

hydrogels can act as semi-permeable membranes for the counter-ions, thereby interact with the 

external solution through ion exchange, and influence the osmotic balance between them. For 

example, the equilibrium degree of swelling for ionic hydrogels containing weakly acidic 

pendent groups increases as increase the pH of the external solution. 

Another most widely studied responsive hydrogel systems are temperature-responsive hydrogels. 

For these hydrogels, reversible volume-phase transition takes place with a change in the 

temperature of the environmental conditions. Poly(N-isopropylacrylamide) (PNIPAAm) and its 

derivatives are typical temperature sensitive hydrogels. Their behavior is related to polymer 
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phase separation as the temperature is raised to a critical value so called lower critical solution 

temperature (LCST). Above the LCST, polymers tend to shrink or collapse, while hydrogels 

swell upon lowering the temperature below the LCST. Thermo-sensitive hydrogels are applied in 

drug delivery and tissue engineering. 

1.6.2 Hydrogel encapsulated nanowire/nanotube heterostructures 

Devices at nanoscale are promising in the domain of biological engineering. However, their 

applications are restricted by the requirement of bio-compatibility.
91

 Combination of 

nanomaterials with non/low-toxic polymer is one of approaches to solve this problem. Hydrogel 

has long chain hydrophilic polymer networks which have the ability to contain a large amount of 

water. Moreover, its swelling/shrinking process can be sensitive to different stimulations such as 

temperature, water, change of pH or ion strength. This makes hydrogel into a material which 

responds to different conditions.
92

 

Figure 1.3A shows a temperature sensitive drug releasing system of gold nanorods encapsulated 

in near-infrared (NIR) light responsive polymer, whose glass transition temperature (Tg) is in the 

range of body temperature.
93

 At normal body temperature (T<Tg), the structure is glassy and 

release is limited, whereas when T>Tg, the polymer is rubbery and release is enhanced. The 

author applied this heating system to trigger release of the chemotherapeutic drug doxorubicin in 

vitro, multiple cycles of NIR exposure were performed and demonstrated a triggered and 

stepwise release behavior. As shown in Figure 1.3B, supramolecular single-walled carbon 

nanotubes (SWNTs) hydrogel was fabricated by ˊ-ˊ interaction between pyrene modified ɓ-

cyclodextrin (Py-ɓ-CD) and SWNTs.
 94

 Due to the high solubility of CD in water, the 

supramolecular SWNTs hydrogel is water-soluble, which solves the problem of solubilization of 
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SWNTs. Moreover, cyclodextrin can form host-guest complexes with various kinds of guest 

molecules which enable to capture guest compounds on the surface of SWNT.
95

 Overall, the 

incorporation of nanomaterials in hydrogel holds great potential for the fabrication of 

multifunctional, bio-compatible nanodevices in the fields of tissue engineering and medicine. 

 



 

28 

 

 

Figure 1.3  Schematics of nanomaterials-hydrogel hybrids showing (A) Gold nanorods-hydrogel 

for temperature sensitive drug releasing {Reprinted with permission from (Hribar, K. C.; Lee, M. 

H.; Lee, D.; Burdick, J. A., Enhanced Release of Small Molecules from Near-Infrared Light 

Responsive Polymer-Nanorod Composites. Acs Nano 2011, 5, 2948-2956.), Copyright (2011) 

American Chemical Society}; (B) Functionalized single wall carbon nanotube-hydrogel for gel 

to sol transition {Reprinted with permission from (Ogoshi, T.; Takashima, Y.; Yamaguchi, H.; 

Harada, A., Chemically-Responsive Sol-Gel Transition of Supramolecular Single-Walled 

Carbon Nanotubes (SWNTs) Hydrogel Made by Hybrids of SWNTs and Cyclodextrins. Journal 

of the American Chemical Society 2007, 129, 4878-4879.). Copyright (2007) American 

Chemical Society} 
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1.6.3 Hydrogel modeling 

The network structure of hydrogels determines their performance in a particular application. The 

most important parameters for structure characterization include the polymer volume fraction in 

a swollen state ( sv ,2 ), the molecular weight of the polymer chain between two neighboring 

crosslinking points (
CM ), and the corresponding mesh size (x).

96
   

The polymer volume fraction describes the amount of fluid imbibed and retained (either 

chemically or physically) with the hydrogel. Generally, there are three kinds of water in 

hydrogels which are referred to as: nonfreezing water (or bound water), intermediate water (or 

secondary bound water), and free water. Nonfreezing water molecules are bound to polymer 

molecules through hydrogen bonds and are immobilized; intermediate water interact with 

polymer molecules; free water has greatest degree of mobility in comparison with above two 

kinds of water molecules. The fraction of free water can be estimated approximately through 

differential scanning calorimetry (DSC) by the ratio of the endothermic peak during the melting 

of frozen water.  

There are two kinds of polymer volume fraction: rv ,2 and sv ,2 . rv ,2 is the polymer volume fraction 

in the relaxed state, which is defined as the state of the polymer immediately after crosslinking 

but before swelling, meanwhile sv ,2 is in swelling state. Ruiz et al. demonstrated the 

measurement of polymer volume fraction by the gravimetric method. 
97

 They made hydrogel 

samples and weighed them in both air and n-heptane. The first measurement was done 

immediately after hydrogel finished crosslinking (relaxed state). Then hydrogel samples were 

placed in deionized water. Once they had swelled to equilibrium they were weighed in air and n-
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heptane again (swollen state). Finally, hydrogel samples were dried at room temperature and re-

weighed in air and n-heptane (dried state).  

Flory-Rehner theory can be used to analyze the structure of neutral hydrogels. It states that a 

crosslinked hydrogel that reaches equilibrium with its surroundings is subject only to two 

opposing forces: the thermodynamic force of mixing and the retractive force of the polymer 

chains. The Gibbs free energy of polymer can be defined as: 

elasticmixingtotal GGG D+D=D                                       ( 1 . 2 0 ) 

where mixingGD is the result of the spontaneous mixing of the fluid molecules with the polymer 

chains, and elasticGD  is the contribution due to the elastic retractive forces build within the gel. 

mixingGD is a measure of the compatibility of hydrogel with surrounding fluid. The compatibility 

is usually expressed by the polymer-solvent interaction parameter
1c. If we keep temperature and 

pressure constant, the differentiation of Equation 1.20 results in express of chemical potential 

(m): 

elasticmixing mmmm D+D=- 0,11                                       ( 1 . 2 1 ) 

Here, 
1mis the chemical potential of the solvent in hydrogel, and 0,1m is the chemical potential of 

the pure solvent. At equilibrium, 0,11 mm= , which means changes in chemical potential due to 

mixing and elastic forces must balance each other. 

The change of chemical potential due to the elastic retractive forces of the polymer chains can be 

determined from the theory of rubber elasticity. Peppas et al. modified the original Flory-Rehner 
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theory for hydrogels prepared in the presence of water. The molecular weight between crosslinks 

in a neutral hydrogel prepared in the presence of water is determined by: 
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where 
CM is molecular weight between two adjacent crosslinks, 

nM is the molecular weight of 

the polymer chains prepared under identical conditions but in the absence of the crosslinking 

agent, v is the specific volume of the polymer, 
1V is the molar volume of water, 

1cis the 

polymer-solvent interaction parameter. 

The space available between macromolecular chains, which is often regarded as the molecular 

mesh or pore is another important structural parameter for analyzing hydrogels. Correlation 

length (x) is used to describe the size of the pores, which is defined as the linear distance 

between two adjacent crosslinks: 

2/12
)( ora=x                                                                        (1.23) 

where a is the elongation ratio of the polymer chains in any direction, and 2/12
)( or is the root-

mean-square, unperturbed, end-to-end distance of the polymer chains between two neighboring 

crosslinks. For an isotropically swollen hydrogel, the elongation ratio (a) can be described as: 

3/1

,2

-
= sva                                                                      (1.24) 
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And the unperturbed end-to-end distance for the polymer chain between two adjacent crosslinks 

can be calculated by: 

2/12/12
)()( NClr no =                                                                    (1.25) 

r

C

M

M
N

2
=                                                                                (1.26) 

where l is the length of the bond along the polymer backbone, Cn is the Flory characteristic ratio, 

N is the number of links per chain, and Mr is the molecular weight of the repeating units of which 

the polymer chain is composed. Combining Equation 1.23 to 1.26, the correlation distance (x) 

can be calculated as: 
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=x                                                                     (1.27) 

The adjustment of the structure of hydrogels (e.g., sv ,2 , 
CM , and x) enables the tailoring of 

hydrogelsô mechanical, responsive, and diffusive properties. In addition, the properties of 

hydrogels can greatly modified by the type of crosslinking, which depends on various factors 

such as covalent bonding, entanglements, hydrogen bonding, ionic bonding, and formation of 

crystallites. 

1.7 Problem Statement and Research Objectives 

The design of multifunctional device demands materials with advanced properties, high 

performance, and good stability.
98

 These requirements are difficult to be achieved by single 

component materials, but can be solved by combining different nanomaterials to utilize the 
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functions of each component.
99-101

 Such heterostructures could be core-shell nanoparticles, 

alloyed nanoparticles, multisegment nanowires, or nanoparticles-nanowires hybrids.
102-105

 The 

major challenges are the selection of materials, the design of architecture, the incomplete 

understanding of interaction between different components in a hybrid, and the productivity of 

high performance nanostructures. In this dissertation, fundamental study of nanoparticle-

graphene structure and nanowires heterostructures has been performed and characterized to 

explore the above mentioned issues. The conducted research strongly provides understanding 

concerning the growth mechanism and properties of constructed heterostructures.
 
The goal of 

this dissertation is to develop heterostructures combining carbon and metal nanostructures and 

explore their applications in chemical/biological sensing and catalysing.
93,106-109

 The specific 

aims of this dissertation are: 

(1) To fabricate multisegment nanowires-graphene heterostructure for multifunctional chemical 

sensors and devices with following sub-tasks: 

(a) Studying the mechanism of graphene growth on noble metal nanoparticles. 

(b) Understanding the migration of nanomaterials at high temperature. 

(c) Synthesizing multi-segment nanowires. 

(d) Growing graphene shell on nanowires. 

(e) Functionalizing graphene structure. 

(f) Fabricating chemical sensor by utilizing functionalized multisegment nanowires-

graphene heterostructures. 
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 (2) To fabricate nanowire-hydrogel heterostructure for chemical separation: 

(a) Growing nanowires. 

(b) Synthesizing PVA hydrogel and nanowire-hydrogel hybrid. 

(c) Measuring water absorption and structure parameters of nanowire-hydrogel 

heterostructure.  

(d) Studying chemical releasing/separating behavior of nanowire-hydrogel hybrid. 
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CHAPTER 2: OXIDATION OF GOLD NANOPARTICLES, EFFECTS OF 

QUENCHING-INDUCED DEFECTS ON CARBON SHELLS FORMATION 

2.1 Introduction 

Our group previously observed that surface oxidation of gold nanoparticles (AuNPs) before 

chemical vapor deposition is a critical step for the fabrication of graphene encapsulated gold 

nanoparticles. Such plasma oxidized AuNPs inhibit the growth of CNT in a CVD process and 

rather resulted in graphene shells encapsulating the core AuNPs. However, detailed 

understanding of the plasma oxidation kinetics of AuNPs, mechanism of the growth of graphene 

shells, and effect of structural defects in the AuNPs on the graphene shells growth remains 

unclear. In this chapter, oxidation kinetics of AuNPs was studied. The surface oxidized AuNPs 

were utilized as catalysts for the growth of graphene shells encapsulated AuNPs (GNPs) in a 

xylene CVD process. On the other hand, surface oxidized AuNPs with lattice defects were also 

used as catalysts in a similar xylene CVD process to provide insight into effect of defects on 

formation of carbon shells. 

2.2 Experiment Methods 

2.2.1 Materials and Methods.  

Gold (III) chloride trihydrate (HAuCl4·3H2O, 99.9%) was purchased from Sigma-Aldrich (St. 

Louis, MO). Hexadecyltrimethylammonium bromide (CTAB, C19H42BrN, 99%), sodium 

borohydride (NaBH4, powder, 98%), and nitric acid (HNO3, 69.5%) were bought from Acros 

Organics. Acetone [(CH3)2CO] was purchased from VWR International (West Chester, PA). 

Xylene (o-, m-, p-isomers) and hydrochloric acid (HCl, 37%) were purchased from Fisher 
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Scientific. All chemicals were used without further purification. A Labnet centrifuge (Edison, 

NJ) was used to clean, wash, and separate nanoparticles. Wet samples were dried in a VWR 

vacuum oven (West Chester, PA). Silicon (Si) wafers (100, n-type) were purchased from IWS 

(Colfax, CA). DI water (18.1 Mɋ cm) was obtained using a Barnstead International DI water 

system (E-pure D4641). Oxygen plasma treatment was performed in a Nordson March Jupiter III 

Reactive Ion Etcher (Concord, CA). Quenching of solutions was performed in a recirculating 

bath (model 1162A) purchased from VWR North American (West Chester, PA). Graphene 

growth processes were conducted inside a Lindberg blue three-zone tube furnace (Watertown, 

WI). Quartz tube was purchased from ChemGlass (Vineland, NJ). A syringe injector was 

obtained from Fisher Scientific (Suwanee, GA). Gas flow rates of all chemical vapor deposition 

processes were controlled by Teledyne Hasting powerpod 400 mass flow controllers (Hampton, 

VA). Thermocouples and temperature controllers were bought from Omega Engineering 

(Stamford, CT). H2 (UHP grade, 40% balanced with Ar) and Ar (UHP grade) gas cylinders were 

purchased from Airgas South (Tuscaloosa, AL).  

2.2.2 Synthesis of Gold Nanoparticles.  

AuNPs were synthesized in a single-step approach. HAuCl4 (5 × 10
ī3

 or 5 × 10
ī5

 M) water 

solution was mixed with CTAB (0.03 M). Subsequently, 10 ɛL of NaBH4 (0.12 M) was added 

into the above solution and magnetically stirred for 2 h at room temperature or at ~130 °C. On 

the other hand, to evaluate the effects of quenching on the AuNPs, a similar growth approach 

was selected, except that the reaction was performed at ~130 °C. After high temperature 

synthesis (at 130 °C), AuNPs were quenched immediately in a recirculating bath for 1 h at 10, 0, 

and ī20 °C. Table 2.1 shows the growth conditions and result summary. It must be noted that 
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AuNPs synthesized at room temperature utilized a higher concentration of metal salt (~5 × 10
ī3

 

M) as compared to those synthesized at 130 °C or quenched (~5 × 10
ī5

 M). 

Table 2.1 Growth conditions and result summary of AuNPs 

Sample 
Temperature 

(°C) 

Quench 

Temperature (°C) 

Average size 

(nm) 
Shape distribution 

Lattice spacing 

(nm) and 

corresponding 

plane 

1 25 Not Quenched 67.4±13.2 

Hexagon: 1.4% 

Rhombus: 10.4% 

Square: 8.1% 

Triangle: 2.5% 

Circular: 77.6% 

0.20 (200) 

0.23 (111) 

0.27 (110) 

2 130 
Not Quenched 

(Air cooled) 
13.9±3.9 

Triangle: 10% 

Square: 9.2% 

Circular: 80.8% 

0.21 (200) 

0.23 (111) 

3 130 10 28.7±7.8 

Triangle: 11.5% 

Square: 5.1% 

Rod: 2.6% 

Circular: 80.8% 

0.23 (111) 

4 130 0  27.6±7.8 

Triangle: 6.3% 

Square: 3.6% 

Rod: 2.7% 

Circular: 87.4% 

0.21 (200) 

0.24 (111) 

5 130 -20  14.5±3.4 Circular: 100% 
0.21 (200) 

0.23 (111) 
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2.2.3 Dispersion and Plasma Oxidation of Gold Nanoparticles. 

As-synthesized AuNPs were oxidized by a plasma treatment process. At first, Si substrate was 

soaked in the mixture of H2SO4 and H2O2 (v/v 5:1) at 100 °C for 30 min. Subsequently, the 

wafer was rinsed with copious amounts of DI water and dried in air. As a next step, AuNPs were 

dispersed on cleaned silicon substrate by the drop-casting method. The substrate was then dried 

in a desiccator, placed in a plasma oxidation chamber, and oxidized at 160 W and 600 mTorr 

chamber pressure, with flowing O2. To study the effect of plasma oxidation of room temperature-

synthesized AuNPs and kinetics, this process was performed for different durations (15ī75 min). 

2.2.4 Growth of Graphene Shells Encapsulated Gold Nanoparticle. 

Graphene shells were grown in a CVD process. After 30 min plasma oxidation, a Si wafer 

covered with AuNPs was placed in the center of quartz tube equipped with precursor and gas 

lines for Ar/H2 flow. Xylene was utilized as the carbon source and was injected through a 

syringe injector into a preheated zone (~220 °C) at the rate of 45 mL/h for ~2 min and 

subsequently transported into the reaction zone (~675 °C) inside the quartz tubes furnace. The 

xylene flow rate was reduced to 1 mL/h after H2 mixed with Ar (Ar/H2 = 1.8 SLM/0.2 SLM or 

10% v/v H2) was introduced in the CVD reactor. Here, H2 acted as an oxygen scavenger and Ar 

as a carrier gas or dilutant. The CVD reaction was continued for 1 h after which H2 and xylene 

were discontinued, and the furnace was cooled down under Ar flow. AuNPs utilized in the 

growth of graphene or carbon shells were synthesized according to conditions corresponding to 

samples 1 and 5 in Table 2.1. 
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2.2.5 Characterization 

Tecnai F-20 was used to collect Transmission Electron Microscopy (TEM) images at 200 kV. 

TEM samples were prepared by dispersing as-prepared samples on lacey carbon TEM copper 

grids purchased from Ted Pella Inc. (Redding, CA). The average nanoparticle size was measured 

from TEM and SEM images, where more than 200 nanoparticles were counted and measured per 

sample. Diameter was measured for spherical nanoparticles and average side length for 

triangular ones. For nanoparticles with other shapes, diagonal length average was taken. All the 

measurements were done using Adobe Photoshop Software. High resolution TEM image for 

graphene shells encapsulated AuNPs was also converted into FFT image using Digital 

Micrograph software. X-ray photoelectron spectra (XPS) were gathered by Kratos Axis 165 with 

mono-Aluminum gun at 160 eV pass energy for full range scan and 40 eV pass energy for 

detailed scan. Open source program XPSPEAK41 was used for XPS analyzing. The analysis 

spot was set as ñSlotò with >20 Õm aperture and 19.05 mm iris setting. Autodesk 3ds Max® was 

used for drawing illustrations and schematics 

2.3 Oxidation Kinetics of Gold Nanoparticles 

Detailed theoretical understanding of the oxidation process was done by XPS analyzing, which is 

used to calculate the accurate thickness of the oxide shell as well as its relationship with the 

oxide stoichiometry (i.e., x in AuOx). In order to do these calculations, it is assumed here that the 

electron emission depth of XPS was 8 nm (less than size of AuNPs),
110 

AuNPs were spherical in 

shape (average diameter ~ 67.4±13.2 nm),
31

 charge neutrality was maintained throughout the 

nanoparticle, and the oxide shell was comprised of a mixture of auric oxide (AuO1.5) and aurous 

oxide (AuO0.5). AuO0.5 exhibits cuprite structure which has four gold atoms and two oxygen 
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atoms per cubic unit cell, with lattice constant of 0.48 nm while AuO1.5 exhibits orthorhombic 

unit cell.
111

 The density of AuO1.5 (MW = molgM AuO /97.220
5.1
= ) is 11.34 g/cm

3
.
112

 Using all 

the above information, the density of AuO0.5 (MW = molgM AuO /97.204
5.0
= ) is estimated to be 

~ 12.31 g/cm
3
. Assuming that 1 mol of AuOx is comprised of f mol of AuO0.5 and (1-f) mol of 

AuO1.5, then x=1.5-f 

Where 10 ¢¢f  and 5.15.0 ¢¢x                                                                              (2.1)    

Thus, for 1 mol of AuOx formed, effective molecular weight is given by:  

)()()( 5.15.0
)1( AuOAuOAuO MfMfM

x
Ö-+Ö=                                               (2.2) 

Molar volume is given by: 
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Density is given by: 
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=r                                                                     (2.4) 

Using Equation 2.1 to 2.4, it is possible to derive relationships between x 

and )( xAuOM , )( xAuOmolV , )( xAuOr . Before oxidation (at t = 0), the volume of nanoparticle being 

detected in XPS is the volume of the spherical cap (capV ) given by:
113

 

)3(
3

2 HRHVcap -=
p

                                                       (2.5) 
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Where R is the radius of AuNPs (~ 33.7 nm) before oxidation (at t = 0) and H is the electron 

emission depth for the sample in XPS (assumed as 8 nm). The fraction of metallic gold 

remaining in surface oxidized AuNPs as calculated from XPS is AuF , which is also changing with 

plasma oxidation duration. Thus, at t = t, this can be written as: 

AuF

HarH

aHraH

=

-+

+--

)33(
3

)3()(
3

1

2

1

2

p

p

                                                                            ( 2 . 6) 

Where r1 is the radius of remaining metallic core of nanoparticle and a is the thickness of oxide 

shell, which are functions of oxidation duration (t). The basic chemical reaction governing the 

conversion of gold into its oxide is: 
xAuOO

x
Au ­+ 2
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                                                             (2.9) 

where n represents the moles of the species, 
xAuOV  is the volume of oxidized gold, Aur ,

xAuOr , 

AuM , and 
xAuOM  are the densities and molar masses of gold and oxidized gold, respectively. 

Combining Equation 2.6 to 2.9 results in: 

)33(
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                                     (2.10) 
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Aur                                                 (2.11) 

Based on above set of equations, the relationship between plasma oxidation time (t), thickness of 

gold oxide shell (a ), and stoichiometric factor ( x ) for AuOx can be derived. H,  R, MAu, ɟAu, are 

already known or assumed. It is to be noted that relationship between XPS derived fraction of 

gold remaining in the nanoparticles (FAu) as a function of oxidation time is shown in the Figure 

2.1B and is based on curve fitting of the data points shown. Thus, at a specific oxidation duration 

and composition of gold oxide ( min75min15 ¢¢t and 5.15.0 ¢¢x ), it was possible to 

estimate thickness of the oxide shell (Figure 2.1C). The calculated oxide shell thicknesses for 

two different stoichiometries of AuOx (x= 1.5 and 0.5) were negligibly different, which further 

implies that oxide shell thickness (AuOx) was independent of stoichiometric factor óxô. However, 

the presence of mixed oxides in our process cannot be ruled out and it is difficult to estimate the 

actual composition of the gold oxide in our study. In addition, the oxidation kinetics of the 

nanoparticles was fitted with Cabrera-Mott (CM) kinetics as proposed earlier for other 

particles.
31,114

 The kinetics of oxide film/shell formation is controlled by diffusion of ions and 

electrons, which further depended on their concentration gradients and self-generated electric 

potential.
32

 In case of thin oxide shell, the electric field is dominating, and the kinetics of oxide 

growth under this field is described by CM model.
32

 It was reported previously that in case of 

spherical particles, the relationship between oxide shell thickness (a) and time (t) satisfy the 

following function:
32 
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Where a is the oxide thickness, a0 is the original thickness (a0 = 0, in this study), and ɋ is a 

constant quantity related to the built-in potential across the oxide and ionic mobility. According 

to Equation 2.12 and from Figure 2.1C, it is possible to plot f(a) as a function of time (Figure 

2.1D). This clearly shows the linear region between 15 and 45 min indicating CM theory is 

applicable to oxidized AuNPs between this duration. The slope of this linear region is ɋ and 

allows for calculating the theoretical oxide shell thickness (a) using Equation 2.12, which further 

fits closely with the observed shell thickness ( min45min15 ¢¢t ) as shown in Figure 2.1E.   
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Figure 2.1 (A) Schematic showing formation of gold oxide (AuOx) shell and XPS analysis 

showing the detection depth (H) and other geometrical parameters, Graphs showing the 

relationship between plasma oxidation time and (B) ratio of metallic Au, (C) thickness of oxide 

shell for AuOx corresponding to x = 0.5 and 1.5, and (D, E) fitting of Cabrera-Mott (CM) model 

for oxidation of spherical particles with the observed experimental data.
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2.4 Effect of Quenching Induced Defects on Carbon Shells Formation 

By using AuNPs synthesized at room temperature (Table 2.1 and sample 1) as catalyst for 

graphene shells growth, uniform graphene shells encapsulated AuNPs were fabricated after CVD 

process. Those shells have interlayer spacing of graphene-like carbon layer ~ 0.34 nm, which is 

consistent with the c-axis spacing of graphite (Figure 2.2A, B). We proposed that the oxide of 

gold (AuOx) is unstable at high temperatures,
115

 prefers to transform to metallic Au, and 

necessitates the electron transfer process. Thus, conversion of Au
x+

 to Au
o
 takes place by 

accepting electrons from the incoming carbon feed resulting in the formation of GNPs (Figure 

2.2C). Similar mechanism has been proposed for the formation of carbon shells around surface 

oxidized AuNPs in a polymer pyrolysis approach.
19
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Figure 2.2 (A, B) TEM images show graphene shells encapsulated AuNPs. (C) Schematic 

illustration of the proposed growth mechanism of GNPs. Surface oxidized AuNPs (grown at 

room temperature) resulted in graphene shells. 

A B 

C 

0.23 nm 
Au (111) 

0.35 nm 

0.34 nm 2 nm 5 nm 
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A unique aspect of our study was to understand effects of defects in AuNPs on the growth of 

graphene shells. Thus, AuNPs with defects prepared by quenching at ī20 
o
C (Table 2.1 and 

sample 5) were dispersed on a Si substrate, plasma oxidized for 30 min, and utilized for CVD 

growth of graphene shells in similar growth conditions. As-synthesized AuNPs (at ~130 °C) 

were rapidly quenched at different temperatures (10, 0, and ī20 °C), and the effects were 

observed (Figure 2.3) and are reported in Table 2.1. Various kinds of defects such as grain 

boundaries (Figure 2.3E, G, H), twin boundaries (Figure 2.3I), and vacancies (Figure 2.3J) 

developed only at low quenching temperatures of 0 and ī20 °C. The defects formation at low 

quenching temperatures could be attributed to sudden cessation (ñfreezingò) of diffusion and 

growth processes in nanoparticles under significantly high cooling rates.
105

 Such processes are 

known to occur for cubic crystal systems, are very rapid in nature, and are referred to as shock 

loading.
116

 The averages sizes of the quenched AuNPs were between 14 and 30 nm (Figure 

2.3K). The percentage of spherical AuNPs increased to 100% (Table 2.1) for the lowest 

quenching temperatures (ī20 °C). 

Since the CTAB solubility in the AuNP growth solution decreases with decreasing 

temperatures,
117

 a low CTAB concentration (0.03 M) greater than the critical micelle 

concentration was chosen in this study.
118

 This has been suggested for synthesis of gold nanorods 

at low temperatures.
24,119 

Moreover, the influence of quenching on surfactant (CTAB) micelle 

shape and its insolubility in growth solution cannot be ruled out.
117

 These effects were more 

dominant for the lowest quenching temperature of ī20 °C with high cooling rates (>6000 

°C/min). This may result in a decrease in the average AuNP size and spherical shape of the 

nanoparticles formed at ī20 °C quenching (Figure 2.3F). However, an increase of nanoparticle 
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size was observed (~28 nm) at 10 and 0 °C. This could be attributed to the relatively controlled 

cooling rates and an optimized jump frequency
120

 of gold ions that was most likely favorable for 

nanoparticle growth as compared to the ī20 °C quenched nanoparticles. It is reasonable to 

consider that 10 °C quenching temperature resulted in a moderate cooling rate because no defect 

formation in the Au lattice was observed (Figure 2.3AīC). 

As a result of high temperature CVD growth, the average size of the core AuNPs was observed 

to increase from ~ 14.5 nm to ~ 49 nm. Majority of the carbon shells formed were disordered or 

comprised of amorphous carbon with a shell thickness of ~ 2.71±1.72 nm (Figure 2.4A-D). 

Several nanoparticles were also observed with graphene-like shells (Figure 2.4E, F, and G) but 

the inter-layer spacing was significantly higher (~0.45±0.08 nm) than the c-axis spacing between 

the graphene layers. Thus, we refer to these graphene-like shells as órelaxed carbon shellsô. This 

interesting observation indicates that the presence of defects in the AuNPs can lead to disordered 

carbon shells or distorted graphene layers. We propose that defects in AuNPs being the high 

energy regions or vacant atomic lattice does not allow for electron transfer process to occur 

between the incoming carbon feed and plasma oxidized and defective AuNPs. These defect sites 

must be allowing for plasma-generated oxygen species/radicals
121

 (during the surface oxidation 

step) to be trapped in them and also acting as electron donor sites. Thus, as shown schematically 

in Figure 2.4H, only the partial surface of the AuNPs, which gets oxidized to some extent 

(shown by ógrey patchesô in the Figure 2.4H) is active area for the growth of graphitic carbon. In 

addition, knowing that carbon solubility in metallic gold is very low (<0.2%),
15

 the non-oxidized 

surface did not participated in the carbon shell growth but disordered carbon formation. Overall, 

this ineffective surface oxidation of AuNPs resulted in disordered or relaxed carbon shells after 
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xylene CVD growth. As clearly indicated in TEM images, these hybrid nanoparticles have 

carbon shells that have some regions with graphitic-like layering while other regions indicating 

disordered carbon. Increased interlayer spacing in the graphitic regions of the relaxed carbon 

shells encapsulating AuNPs could also be attributed to the non-uniform surface gold oxide 

patches present on the AuNPs as well as crystal defects within the core nanoparticle that could 

lead to improper interfaces.
122

 Finally, it could be argued that the defects in surface oxidized 

AuNPs will be annihilated during the CVD growth process but an earlier report demonstrates 

that defects in such nanoparticles at high temperature annealing can survive and remain in the 

structure.
123

 Moreover, corresponding to the size of AuNPs in our study (~ 67.4±13.2 nm), the 

estimated melting temperature
124

 is greater than ~ 1000 
o
C, which is much higher than the CVD 

growth temperature employed (~ 675 °C). Thus, the xylene CVD growth will not lead to 

complete melting of AuNPs but only their coalescence as observed in this study. However, we 

believe that in such a growth environment, the defects in the surface oxidized AuNPs may have 

survived for duration much lower than the CVD growth duration (~ 1 h). 
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Figure 2.3 TEM images of AuNPs (Table 2.1 and sample 3-5) synthesized at ~ 130 
o
C and then 

quenched at (A, B, C) 10 
o
C, (D, E) 0 

o
C,(F, G, H, I, J) -20 

o
C, and (K) AuNP size distributions 

as a function of quenching temperatures. 
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