MACHINING USING A DIAMOND-COATED CUTTING TOOL:
FINITE ELEMENT SIMULATIONS AND EXPERIMENTS

by

FENG QIN
Y. KEVIN CHOU, COMMITTEE CHAIR
VIOLA L. ACOFF
MARK E. BARKEY
DANIEL J. FONSECA
LEILA J. LADANI

A DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in the
Department of Mechanical Engineering
in the Graduate School of
The University of Alabama

TUSCALOOSA, ALABAMA

2012
ABSTRACT

Chemical vapor deposition (CVD) diamond-coated tools have the advantage of a low cost and flexibility in fabrications when compared with sintered polycrystalline diamond (PCD) tools in machining lightweight high-strength materials. However, coating-substrate interface delaminations remain a major technical barrier. Further, the complex effects of the tool geometry and the deposition residual stress, as well the machining conditions on the tool performance, have hindered the industrial applications of CVD diamond-coated tools.

The objectives of this research are: (1) to develop finite element (FE) models of cutting simulations including deposition residual stresses for investigating tool edge radius effects on diamond-coated tool stress evolutions from depositions to machining; (2) to study diamond-coated tool performance in machining Al-Si alloys and Al-matrix composites with various cutting conditions; (3) to implement a cohesive zone interface in a diamond-coated tool for two-dimensional (2D) cutting simulations. The research methods include: (1) coupled thermo-mechanical finite element modeling of cutting simulations, including the deposition residual stress, for tool performance evaluations and tool stress evolutions; (2) machining of A390 alloy and A359/SiC-20p composite workpieces with a force sensor and tool wear evaluations at different conditions; and (3) incorporating a traction-separation law as the interface behavior in the FE cutting simulations for coating delamination analysis.

The major findings are summarized as follows: (1) In gentle cutting, deposition residual stresses remain dominant, but change noticeably at a large uncut chip thickness. (2) 2D FE results of the cutting simulation are compared with the machining experiments. The difference
between simulations and experiments is acceptable. (3) Increasing the edge radius will increase cutting forces; however, this increasing rate decreases at a higher feed. The combined effects of the tool geometry and cutting conditions result in complex wear behavior of diamond-coated tools. (4) The cutting simulations incorporating a cohesive-zone interface in a diamond-coated cutting tool demonstrate that the interface fracture energy is the major cause of coating delaminations. Furthermore, a larger uncut chip thickness tends to result in coating delaminations.
LIST OF SYMBOLS

C Specific heat (J/kg-K)

C_T The heat capacity

d Depth of cut (mm)

E_{chip} Friction energy into chip

E_{tool} Friction energy into tool

f Feed (mm/rev)

F_a Axial cutting force in turning (N)

F_f Frictional cutting force at rake face (N)

F_r Radial cutting force in turning (N)

F_t Tangential cutting force in turning (N)

k Shear flow strength of the chip at the primary zone

K Thermal conductivity of workpiece (W/m-K)

K_T Thermal conductivity of cutting tool (N/m-K)

l_c Tool-chip contact length (mm)

n Spindle rotation speed (rev/min)

n Correction factor

P_{fr} Frictional energy dissipation rate per unit area

q Heat flux (kJ/m2-s)

Q_{pl} Heat flow rate per unit volume

r_e Edge radius (μm)
t_u Uncut chip thickness in orthogonal cutting (mm)

tc Chip thickness in orthogonal cutting (mm)

T_n Normal traction (MPa)

T_t Shear traction (MPa)

V Cutting velocity (m/s)

V_c Velocity of chip (m/s)

VB Width of flank wear (mm)

α Rake angle (rad)

α_c Thermal expansion coefficient of the coating

α_s Thermal expansion coefficient of the substrate

\dot{e}^{pl} Plastic strain rate

β_r Heat partition coefficient for rake face heat source

Δ_n Normal separation (µm)

Δ^c_n Critical normal separation

Δ_t Shear separation (µm)

Δ^c_t Critical tangential separation

ΔT Temperature difference

δ_n Non-dimensional normal displacement jump

δ_t Non-dimensional tangential displacement jump

δ Total displacement jump

δ_n Normal characteristic length (µm)

δ_t Shear characteristic length (µm)

δ Displacement jump (µm)
\(\phi_n \) Normal work of separation (J/mm²)

\(\phi_t \) Shear work of separation (J/mm²)

\(\dot{\gamma} \) Slip rate at the chip tool interface

\(\rho \) Density (kg/m³)

\(\sigma \) Normal stress (N/mm²)

\(\sigma_1 \) First principal stress (N/mm²)

\(\sigma_{equiv} \) Equivalent stress (N/mm²)

\(\sigma_{\text{max}} \) Interfacial normal strength (N/mm²)

\(\sigma_N \) Normal strength (N/mm²)

\(\sigma_r \) Normal stress in the radial direction (N/mm²)

\(\sigma_\theta \) Normal stress in the tangential direction (N/mm²)

\(\theta_A \) Temperature of face A

\(\theta_B \) Temperature of face B

\(\tau \) Shear stress (N/mm²)

\(\tau_f \) Friction stress (N/mm²)

\(\tau_{\text{max}} \) Interfacial shear strength (N/mm²)

\(\tau_{r\theta} \) Shear stress along the interface (N/mm²)

\(\nu \) Poisson’s ratio

\(\omega \) Correction factor

\(\eta \) Fraction coefficient of energy
ACKNOWLEDGMENTS

First, I am indebted to Dr. Y. Kevin Chou, my research advisor, for his guidance, encouragement, and support. This dissertation could never have been accomplished without him. His insights, patience, and educations always light my way during my research journey at The University of Alabama. I have learned a lot from him which benefits me now and will continue in my whole life.

Also, I would like to extend my deepest appreciation to my committee members, Dr. Viola L. Acoff, Dr. Mark E. Barkey, Dr. Daniel J. Fonseca, and Dr. Leila J. Ladani, for their invaluable suggestions on this work and for their support.

I give my thanks to the following people: Dr. Thompson, with Vista Engineering in Birmingham, supplied the nanocrystalline diamond-coated cutting tools and A390 bars for this research; Dr. Kwon and Mr. Park from Michigan State University selflessly gave me useful technical discussions; Dr. Yanfei Gao with the University of Tennessee provided me some insightful views of fracture mechanics; and Dr. Ivester and Mr. Whitenton from the National Institute of Standard and Technology provided detailed experimental validation for the 2D cutting simulations.

I also would like to give my thanks for the selfless help and support of my friends at the University of Alabama throughout this course of study. I am grateful to Dr. Jianwen Hu, Dr. Long Zhang, Peng Qu, Dr. Xiao Li, Bill, Sam, and James. Special thanks to the other members in our group, Dr. Jianwen Hu, Mr. Chao Miao, Mr. Ping Lu, Mr. Xibing Gong, and Mr. Ninggang Shen for their assistance in my research. Thanks are extended to The University of Alabama and
the Mechanical Engineering Department for providing me with such a wonderful opportunity to pursue my Ph.D. study here. Additionally, I definitely owe a “thank you” to my brothers and sisters in the Tuscaloosa Chinese Christian Church for their good will and endless encouragement.

The financial support for this research, from National Science Foundation (Grant No.: CMMI-0728228 & CMMI-0928627), is gratefully acknowledged.

Last but not least, I would like to thank my beloved parents, brother, wife, and little one for their continuing support and encouragement, and for always being there for me. I am indebted so much to them.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Background and Motivation</td>
<td>1</td>
</tr>
<tr>
<td>Research Objectives and Approaches</td>
<td>5</td>
</tr>
<tr>
<td>Outline of Dissertation</td>
<td>6</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td>8</td>
</tr>
<tr>
<td>Fundamentals of Metal Cutting</td>
<td>8</td>
</tr>
<tr>
<td>Orthogonal Cutting</td>
<td>11</td>
</tr>
<tr>
<td>Numerical Simulation in Metal Cutting</td>
<td>12</td>
</tr>
<tr>
<td>Solution Methods</td>
<td>13</td>
</tr>
<tr>
<td>Workpiece and Tool</td>
<td>14</td>
</tr>
<tr>
<td>Couple Thermo-mechanical Process</td>
<td>14</td>
</tr>
<tr>
<td>Chip Formation</td>
<td>15</td>
</tr>
<tr>
<td>Tool Geometry Effect</td>
<td>16</td>
</tr>
<tr>
<td>Tool Geometry Effect on Tool Performance</td>
<td>16</td>
</tr>
<tr>
<td>Tool Geometry Effect on Deposition Stress of Diamond-coated Tools</td>
<td>17</td>
</tr>
</tbody>
</table>
The Confound Effects of Combined Tool Geometry, Deposition Stress and Cutting Conditions on Tool Performance

Machining High Strength Al-based Materials with Diamond-coated Tools

Cohesive Zone Model

Summary

3. FINITE ELEMENT MODELING OF ORTHOGONAL CUTTING

Introduction

Finite Element Formulations

Adaptive Mesh

Contact Algorithms

Friction Models

Heat Generation and Heat Transfer

Summary

4. 2D CUTTING SIMULATIONS WITH A DIAMOND-COATED TOOL INCLUDING DEPOSITION RESIDUAL STRESSES

Introduction

Deposition Stress Analysis

Model and Simulations

Convergence Test for a Typical 2D Insert

Cutting Simulations

Modeling Details

Results and Discussion

Experimental Validation

Cutting Tool Preparations
Deposition Simulation Results.................................93
Cutting Simulation...94
Summary...107

7. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH108

Conclusions..108
Contributions of the Study...110
Recommendations for Future Research..111

REFERENCES ...113

APPENDIX A. PROCEDURE OF IMPLEMENTING COHESIVE ZONE MODEL INTO DIAMOND-COATED TOOL INTERFACE ...125

APPENDIX B. A TYPICAL INPUT FILE FOR DEPOSITION RESIDUAL STRESS SIMULATION INCLUDING COHESIVE ZONE ...165

APPENDIX C. CUTTING SIMULATION AND WORKPIECE WITHDRAWAL SIMULATION INCLUDING COHESIVE ZONE AND DEPOSITION RESIDUAL STRESS ..201
LIST OF TABLES

1. Surface Workpiece Material Constitutive Constants ...44

2. Material Properties ..44

3. The Cohesive Zone Parameters for the Diamond-Coated WC Tool ...86

4. Material Properties of the WC-Co Substrate ...87
LIST OF FIGURES

1. A diamond-coated tool history in machining an A359/SiC/20p composite bar2

2. An SEM micrograph of the tool tip after failure in machining an A359/SiC/20p composite with diamond-coated tools ..3

3. A schematic drawing of the turning process ..8

4. A schematic drawing of orthogonal cutting ..12

5. An example of the Arbitrary Lagrangian Eulerian simulation result, (a) Undeformed shape, and (b) Deformed shape ...27

6. Stresses distribution at tool/chip interface (Usui & Takeyama, 1960)30

7. A simple schematic of the basic Coulomb friction law ..31

8. Gap heat conductance model ..34

9. σ_y component result of standard mode and explicit mode for different coating mesh density ..39

10. A schematic drawing showing the interface stress components around the edge area40

11. Interface stress comparison for re50t15 under different simulation modes and three various mesh densities ...40

12. Maximum σ_r comparison for different conditions ..41

13. Comparison with the reference value of 15 layers mesh density ..41

14. Deposition stress contour, normal stress parallel to rake face (50 μm edge radius)42

15. Assembly of workpiece and tool ...45

16. An example of simulated stress contours ($v=3.0$ m/s, $h=0.05$ mm, $r_e=5$ μm): (a) Overall and (b) Chip and workpiece ..47

17. Stress contour comparison ($v=3.0$ m/s, $h=0.05$ mm, $r_e=5$ μm): (a) with deposition stresses; (b) without deposition stresses ...48
18. First principal stress contours at different conditions: (i) 3 m/s, 0.05 mm: (a) \(r_e=5 \, \mu m \), (b) \(r_e=50 \, \mu m \); and (ii) 1 m/s, 0.15 mm: (c) \(r_e=5 \, \mu m \), (d) \(r_e=50 \, \mu m \) ...49

19. Tool temperature distributions at different conditions: (i) 3 m/s, 0.05 mm: (a) \(r_e=5 \, \mu m \), (b) \(r_e=50 \, \mu m \); and (ii) 1 m/s, 0.15 mm: (c) \(r_e=5 \, \mu m \), (d) \(r_e=50 \, \mu m \) ...50

20. Interface stress profiles at different conditions: (a) Radial and (b) Circumferential normal components ..51

21. Experiment setup: (a) 2D orthogonal cutting test bed, and (b) Workpiece and tool arrangement in the machine ...54

22. Setup for workpiece and tool: (a) Close-up view of tool and workpiece setup, and (b) Side view of a diamond-coated tool tip ...54

23. Cutting force history from one set of testing ..56

24. Temperature history at a specific tool location; inserts are thermal images at different times ..56

25. Cutting tool temperature contours at different uncut thicknesses ..57

26. Stress contour from cutting simulations: (a) Workpiece and chip, and (b) Tool alone (Unit: MPa) ..58

27. Cutting tool tip temperature contours: (a) Overall, and (b) Tool alone (Unit: °C) ...59

28. Cutting edge images under white interferometer: (a) 5 \(\mu m \) edge radius, (b) 65 \(\mu m \) edge radius ..65

29. Cutting edge images of coated tools under white interferometer: (a) 5 \(\mu m \) edge radius, (b) 65 \(\mu m \) edge radius ..67

30. Experiment Setup in CNC machine ..68

31. Cutting forces at 4 m/s and 0.05 mm/rev for two types of edge radii: (a) 5 \(\mu m \) edge radius, (b) 65 \(\mu m \) edge radius ...69

32. Cutting forces at 1.3 m/s and 0.15 mm/rev for two types of edge radii: (a) 5 \(\mu m \) edge radius, (b) 65 \(\mu m \) edge radius ...70

33. Cutting force ratio comparisons (normalized by force at 5 \(\mu m \)); parameter pair denotes cutting speed (m/s) and feed (mm/rev) ...71

34. Tool wear development at 4 m/s and 0.05 mm/rev ...72
35. Tool wear development at 1.3 m/s and 0.15 mm/rev ...73

36. Worn tool SEM images at 4 m/s and 0.05 mm/rev: (a) 5 µm and (b) 65 µm edge radius, and at 1.3 m/s and 0.15 mm/rev: (c) 5 µm and (d) 65 µm edge radius ..75

37. Typical traction-separation response (Hu et al., 2008) ..80

38. The cohesive zone model for normal traction and shear traction for two separate modes (Geubelle & Baylor, 1998) ..83

39. Flowchart of the simulations with cohesive zone residual stress included in a diamond-coated tool ...85

40. Deposition stress contour, normal stress parallel to rake face (15 µm edge radius)88

41. Normal stress (σn) in cohesive zone after deposition ...89

42. Workpiece and diamond-coated tool assembly, including cohesive elements90

43. σn results of cohesive zone at two different fracture energy values after deposition at the interface strength of 500 MPa ..92

44. σn responses for different interface normal strength, 500MPa and 400 MPa at the same fracture energy 100 J/m² and interface shear strength 100 GPa ...93

45. Cohesive zone without failure after deposition ...94

46. Initial state of the workpiece, tool, and cohesive zone ..95

47. No cohesive failure at cutting step time 0.00158 seconds ...95

48. Cutting and initial cohesive failure at step time 0.00160 seconds ...96

49. Cohesive failure state at cutting step time 0.00162 seconds ..97

50. Cohesive failure final state in the cutting simulation ...98

51. Final state of chip formation in the cutting simulation ..99

52. Final state (zoom-in for top-right chip) of chip formation in the cutting simulation100

53. Cohesive failure at workpiece withdrawal simulation step time 0.000011 seconds101

54. Final state of the cohesive zone in the workpiece withdrawal process102

55. Final state of workpiece and tool in workpiece withdrawal simulation103
56. Initial state of the workpiece, tool, and cohesive zone in cutting parameter v5h0.15104
57. Final state of workpiece, tool, and cohesive zone in the cutting simulation v5h0.15105
58. Final state of cohesive zone in the workpiece withdrawal simulation................................106
CHAPTER 1
INTRODUCTION

Background and Motivation

Man-made synthetic diamond, a special material produced through physical or chemical processes, has a unique combination of properties – high hardness, low friction coefficient, high elastic modulus, ultra-high thermal conductivity, optical transparency, and good chemical stability. These notable properties have led to many applications in the automotive and aerospace industries. Diamond has been extensively used for some special occasions such as machining metal-matrix composites, high silicon aluminum alloys, nonferrous metals, fiber-reinforced plastics, etc. These workpiece materials have been proven unsuitable for machining using traditional cemented carbide tools which experience rapid tool wear under these conditions.

In reality, two kinds of diamond tools have gained wide application: polycrystalline diamond (PCD) tools and chemical vapor deposited (CVD) tools. PCD is the most commonly used diamond tool material, made by distributing micrometer-sized diamond grains in a metal matrix (binder phase) and then hardening and sintering the matrix onto a tool tip. CVD diamond tools have been developed over the past fifteen years with the aid of chemical vapor deposition technology. As a protective coating, CVD diamond material has attracted interest from many researchers and has been used for various industrial situations, including electrical insulation, magnetic disk coating, biomedical equipment, cutting tools, etc.

Compared to PCD diamond tools, CVD diamond coatings have many advantages, such as the capacity to serve as coating for tools of complex geometry, coating growth over a large area,
and reduced fabrication costs. However, due to the poor adhesion of the diamond coating on the carbide substrate, the practical use of diamond-coated tools still has some limits. According to many sources, coating delamination is the major failure mode of CVD diamond coatings, even though CVD diamond coating is thought to exhibit high tribological behavior. Figure 1 shows the tool wear history of a diamond-coated tool in machining an A359/SiC composite. The machining conditions are as follows: cutting speed = 4 m/s, cutting feed = 0.10 mm/rev, and cut depth = 1 mm. After testing for about 3 minutes, a drastic increase of the tool flank wear is observed. Tool failure occurs suddenly during a single cut and is characterized by coating delamination and subsequent massive substrate material loss.

Figure 1. A diamond-coated tool history in machining an A359/SiC/20p composite bar.
Figure 2 demonstrates coating delamination and massive substrate material loss.

Figure 2. SEM micrograph of the tool tip after failure in machining a A359/SiC/20p composite with diamond-coated tools.

With the lightweight, high-strength requirement of products and parts, innovative materials such as Al-Si alloys and Al-matrix have been developed and applied increasingly in the automotive industry and aerospace industry. These relatively new materials have higher strength but lightweight, with stronger wear resistance and better stability of mechanical properties at elevated temperatures, in contrast to the conventional materials. Meanwhile, these characteristics are not advantageous to conventional carbide tools, which experience abrupt tool wear no matter whether they are plain or coated. However, diamond tools demonstrate the best performance among available tool materials and thus are considered the best choice. CVD diamond-coated tools, as the potential counterpart of the PCD tools, have been widely used in machining these highly abrasive materials.
Recent years have seen a significant number of studies performed on the machining of Al-Si alloys and Al-matrix composites by CVD diamond-coated tools and the tool geometry effect on deposition stress and machining performance, as well as the cutting conditions. Researchers have done many experiments investigating the effect of cutting conditions on tool performance. However, there is no coherent perspective on this effect.

Since deposition residual stress arising from the diamond coating process can affect adhesion strength, it has also attracted considerable interest from investigators, especially in how tool geometry affects the stress. A lot of researches have been devoted to investigating the tool geometry effect on deposition residual stress, but tool geometry is limited to some wider types, such as upsharp and round. The tool edge radius and coating thickness, as major features of CVD diamond-coated tools in fabrication, are not addressed.

How deposition stress influences tool performance is another issue which is infrequently addressed in the literature. Moreover, the existing model related to that effect is a simplified static sequential simulation, which does not take into account the simultaneous thermal loading and mechanical load, as occurs during the actual machining. This means that the model cannot represent the actual machining situation. Thus, a cutting simulation must be formulated to approximate the actual cutting.

Interface adhesion is also an important concern for coated tools, since it is essential to coating delamination. Much effort has been spent on this from theoretical and experimental angles. Many researchers have been trying two main methods, i.e., indentation and scratching tests, to investigate interface dehesion. Theoretically, many of them have been using the cohesive zone model to conduct finite element analysis on interface behavior. However, these two methods do not effectively address the cohesive zone model in coated tools in machining.
performance. No literature exists regarding cohesive zone model application in cutting simulations.

Furthermore, the interwoven effects of tool geometry, deposition residual stress, the cohesive zone interface, and various cutting conditions in combined thermal and mechanical loads impact tool performance in a very complicated way. Difficulties in modeling make it an important research target in the study of metal cutting with coated tools. All of the above issues inspired us to conduct the research presented in this dissertation.

Research Objectives and Approaches

This research intended to investigate the performance of the newly developed nanocrystalline diamond-coated tools, made by microwave-plasma assisted CVD, when machining high-strength Al-Si alloys and Al-matrix composites. The primary objective is a better understanding of tool geometry effects combined with deposition residual stress and machining conditions on the performance and failure modes of CVD diamond-coated tools.

The specific objectives of this research include the following:

1. To investigate the performance of nanocrystalline diamond-coated (NCD) tools in terms of cutting forces and tool life in machining Al-Si alloys and Al-matrix composites, to evaluate the effect of cutting parameters on the tool life.

2. To develop a numerical method to study the thermo-mechanical states of diamond-coated tools using orthogonal cutting simulation including deposition residual stresses, and to study the effect of tool edge radius on the stress evolutions of diamond-coated tools from deposition to machining, which may correlate the tool stresses to tool failure.
3. To implement a cohesive zone interface in a diamond-coated tool in 2D cutting simulations.

The approaches are described as follows,

1. Commercial WC-Co cutting inserts prepared with different edge radii are used to investigate the edge radius effects on cutting forces and tool wear. The diamond-coated inserts are examined for the geometry specifications. The coated tools with different substrate edge radii are further tested in the machining of composite bars. Two different cutting conditions: (4m/s and 0.05 mm/rev) and (1.3 m/s and 0.15 mm/rev) are tested. The machining forces are monitored by Kistler force sensor and analyzed against the edge radius, and tool flank-wear is measured and evaluated. SEM is employed to examine wear features.

2. 2D cutting simulations with a diamond-coated tool are developed in Abaqus explicit. The tool is modeled as elastic behavior and the workpiece is modeled with plastic behavior characterized by Johnson-Cook model. The deposition residual stresses in the coated tool are first simulated, and the model results are carried over into the cutting simulations. The simulations are used to evaluate the edge radius effects on cutting tool stress contours and temperature distributions, as well as interface stresses.

3. A cohesive zone model is embedded for the interface of tool coating and substrate. The cohesive element is constructed in the code to avoid node numbering issue for curved cohesive elements. Substrate is modeled with plastic behavior. The cohesive interface is modeled with different fracture energy, and then a suitable parameter is chosen for 2D cutting simulation. Uncut chip thickness effect is investigated.
Outline of Dissertation

Chapter 2 presents a literature review on cutting mechanics in orthogonal cutting and cutting simulation. Tool wear, diamond-coated tool failure mode, and the machining of high-strength Al-Si alloys and Al-matrix composites are also discussed. The cohesive zone model for characterizing interfacial failure is also introduced. Chapter 3 introduces the finite element modeling of orthogonal cutting.

Chapter 4 presents the experimental results on machining an A359/SiC composite with different edge radii nanocrystalline diamond-coated tools under certain cutting conditions. The machining performance of these diamond tools is compared in terms of cutting force, tool wear, surface roughness of the machined part, and tool life. The effect of the cutting condition on the performance of NCD tools is also investigated.

Chapter 5 presents a 2D orthogonal cutting simulation with a diamond-coated tool, including deposition residual stress. Two different edge radii tools are simulated under two combinations of cutting conditions. The stress evolutions, cutting forces, and cutting temperature are investigated. The preliminary results are evaluated.

Chapter 6 develops a 2D orthogonal cutting simulation with a cohesive zone model embedded in a diamond-coated tool, including deposition residual stress. Different cohesive fracture energy values are tested for the cutting simulations. The edge radius effect is also investigated when modeling tool geometry with the cohesive zone model.

The last chapter summarizes the primary results and contributions from this study; recommendations for the future directions of this research are also presented.
CHAPTER 2

LITERATURE REVIEW

Fundamentals of Metal Cutting

Metal cutting refers to the manufacturing process designed to remove unnecessary material from the workpiece so as to produce the mechanical part with desired dimensions and proper surface quality. The three most widely used metal cutting operations are turning, milling, and drilling. This research focuses on turning as the basis for other metal cutting operations, due to the current available facility.

Figure 3 is a typical three-dimensional schematic diagram of the turning operation, where the tool moves an axial distance of f (feed) relative to the workpiece to reduce the workpiece radius by an amount of d (depth of cut) while the workpiece revolves one cycle.

![Figure 3](image.png)

Figure 3. A schematic drawing of the turning process.

Understanding the metal cutting process is important for the following reasons. First of all, even minor improvements in cutting techniques are of major importance for productivity in
high-volume production. With the rapid development of modern industry, productivity is crucial to manufacturing, and the improvement of cutting techniques can bring higher production efficiency and reduce manufacturing costs. A better understanding of the metal cutting process is also beneficial for products of greater precision and longer useful life. For customers who want to achieve the desired quality of the machined part in an efficient fashion, better knowledge of the cutting process can help them to utilize a more effective machine workpiece with certain material and geometric specifications. As for the machine tool makers who wish to optimize the tooling design and evaluate the effect of cutting process parameters on the quality of machined parts, a better understanding of the cutting process can help them develop advanced cutting tools to broaden their machining scope and optimize fabrication of current tools.

The research related to metal cutting has a long history and can date back to the 18th century. People have tried different methods of studying the metal cutting process from various perspectives. In the beginning, research primarily focuses on the chip formation mechanism. For example, Merchant (1945) proposes the concept of shear plane and formulated a mathematic model of the shear angle by using the minimum energy principle. Lee and Shaffer (1951) present an approach to analyzing plastic deformation, the slip-line field model of the metal cutting process. This slip line theory applies to plane strain conditions only, and the material properties are also simplified to rigid perfectly plastic such that the method is limited to steady state, orthogonal cutting conditions.

Thereafter, researchers developed more and more complex and sophisticated models involving various aspects of cutting mechanisms, such as work-hardening, cutting temperature, strain rate, and friction. Hahn (1951) formulates cutting temperature analysis by using an oblique shear plane heat source moving in the cutting direction with the cutting velocity in an infinite

Orthogonal Cutting

Metal cutting processes can be categorized into two kinds: orthogonal and oblique metal cutting. Owing to its simplicity, orthogonal cutting, proposed by Ernst and Merchant (1941), has been applied widely in metal cutting research. The typical orthogonal cutting model can be illustrated in Figure 3, where tool cutting edge is perpendicular to the relative cutting velocity and normal to the feed direction. The wedge-shaped tool consists of two intersected surfaces,
termed rake face and flank face, shown forming the cutting edge in Figure 3. The relative motion of tool to workpiece shapes the machined surface by removing unwanted material. Orthogonal cutting eliminate many of the independent variables, since the chip is produced in plane stain, enabling us to simplify metal cutting in a two-dimensional rather than a three-dimensional model. Therefore, the majority of analytical and numerical works on chip formation and cutting force modeling are formulated with this simplified model. Orthogonal cutting usually can be implemented experimentally by turning either thin-wall tubing or rings.

![Figure 4. A schematic drawing of orthogonal cutting.]

Numerical Simulation in Metal Cutting

Although metal cutting is a widely used process, the modeling and simulation of this phenomenon is not trivial. Metal cutting actually has been proven to be particularly complicated, since this physical phenomenon involves large elastic-plastic deformation, complicated contact/friction conditions, thermo-mechanical coupling, and chip formation mechanisms. Over 100 years, the study of metal cutting has been a challenging task. Early theoretical models were developed to describe the problem qualitatively, but the drawback of existing models for chip formation is oversimplification of the problem with disregard for the interaction of different
parameters. This issue has been solved with numerical simulation by the finite element method, made possible by the rapid development of high-speed computers and some related algorithms dealing with large strain/displacement problems and adaptive meshing methods. These newly developed techniques make numerical simulation of metal forming involving material removal possible. Pioneering studies by Usui and Shirakashi (1974, 1982) and Klamecki (1973) contributed to the finite element method. In the following sections, a literature review concerning a wide range of aspects in numerical simulation of machining is presented.

Solution Methods

The solution methods in metal cutting can be grouped into three categories, called updated Lagrangian, Eulerian, and Arbitrary Lagrangian Eulerian formulations. The difference between these methods is how the relationship between mesh and material is handled. The Lagrangian method assumes that mesh is attached to and moves with the material, which is helpful for simulating the transient process and discontinuous chip. The shortcoming of the method is inevitable element distortion during simulation. Shih and Yang (1993), Lin and Lo (2001), and Mabrouki and Rigal (2006) utilize pre-distorted mesh, and some researchers (Baker, 2006; Monaghan & McGinley, 1999; Ozel & Altan, 2000; Yen, Jain, & Altan, 2004) attempt a remeshing method to minimize this problem. The Eulerian method fixes the mesh in space and material can flow through the element surfaces, thereby allowing the simulation of a steady state. No chip separation is required in the modeling. The disadvantage is the need for predefined chip geometry and the tool/chip contact length. The Arbitrary Lagrangian Eulerian method (ALE) combines both benefits of the above formulations. Detailed descriptions of the ALE method can be found in Adibi-Sedeh and Madhavan (2003); Movahhedy, Gadala, and Altintas (2000); and Rakotomalala, Joyot, and Touratier (1993).
Workpiece and Tool

Generally workpiece is assumed as elastic-plastic material. Some authors also used rigid-plastic and rigid-viscoplastic materials to simplify the analysis. This choice would not give rise to thermal strains and residual stresses. As for tool modeling, most authors assumed tool as rigid so as to simplify the analysis. However, some authors target to evaluate tool choose elastic behavior. For example, in Carrol III and Strenkowski’s work (1988), and MacGinley and Monaghan’s work (2001), elastic model was utilized to represent their tools.

Couple Thermo-mechanical Process

Heat generation and dissipation from plastic work and frictional work will be distributed to the workpiece, chip, and tool and lost to the surrounding environment by means of convection and radiation. Most finite element models approximate temperature through the weak form of the governing equation, which can be stated as:

\[C_T \dot{T} + K_T T = Q(t), \]

(2.1)

where \(C_T \) is the heat capacity, \(K_T \) is the heat conduction, \(T \) is the nodal temperature at time \(t \), and \(Q \) is the heat flux and heat generation from the plastic deformation.

In some researchers’ models (Guo & Dornfeld, 1998, 2000; Guo & Liu, 2002), the adiabatic processes are frequently assumed, so heat conduction is not required. However, this choice is limited to application in low diffusivity materials or in high speed processes. Considering the residual stress of the workpiece, thermal-mechanical coupling analysis should be adopted instead of adiabatic method.

Chip Formation

Chip formation has been an interest for investigators of metal cutting. Actually, there are several kinds of chip, such as continuous chip, discontinuous chip, saw-type chip, etc. However,
simulating chip types besides the continuous chip has been an issue, because of insufficient computer capacity, convergence problems, or lack of a suitable chip separation mechanism. Hashemi, Tseng, and Chou (1994) and Marusich and Ortiz (1995) make breakthroughs by using explicit algorithms but without predefined chip separation or breakage paths to simulate discontinuous chip formation. Recent years have seen a vast body of simulations using chip breakage strategies (Barge et al. 2005; Hua & Shivpuri, 2004). Three-dimensional chip formation has developed with the advance of computer capacity and new modeling strategies. Lin and Lin (1999, 2001) simulate a 3D machining operation by using a structure mesh and a predefined parting line. Guo and Dornfeld (2000) and Guo and Liu (2002) simulate incipient drilling and hard turning. Pantale et al. (2004) use the ALE method to simulate 2D and 3D oblique cutting and milling. Ceretti et al. (2000) and Fang and Zeng (2005) combine a remeshing technique and unstructured mesh to simulate oblique cutting.

An ideal numerical model of machining should be able to simulate different types of chip morphology, not just one form. However, due to the complexities of the physical phenomena involved in large plastic deformation, heat generation, contact and friction, damage evolution, etc., chip separation could not be generated in one strategy. Currently, there are three main methodologies to address the issue: to use a predefined parting plane to realize continuous chip separation, to define criterion for chip separation and breakage, and to use no chip separation. Actually, researchers use different chip separation and breakage criteria, such as nodal distance (Zhang & Bagchi, 1994), equivalent plastic strain (Guo & Dornfeld, 2000), energy density (Lin & Lin, 1999), tensile plastic work (Hua & Shivpuri, 2004), maximum principal stress (Hashemi, Tseng, & Chou, 1994), and toughness (Barge et al., 2005; Johnson & Cook, 1983; Marusich & Ortiz, 1995).
Tool Geometry Effect

Tool Geometry Effect on Tool Performance

Tool geometry has a significant influence on machining performance. It has attracted increasing interest from researchers studying metal cutting, whether with diamond-coated tools or plain tools. Sheikh-Ahmad, Stewart, and Feld (2003) conduct research on the failure characteristics of diamond-coated carbide in machining wood-based composites using uncoated and CVD diamond-coated cemented carbide tools. The work indicates that a honed cutting edge may greatly reduce fracture and delamination of the diamond coating and generally improve tool performance. Yen, Jain, and Altan (2004) establish a finite element orthogonal machining model to investigate the effect of different tool edge geometries on cutting 0.2% carbon steel. Hone tools and chamfer tools with different edge radii were investigated. They compare the predicted cutting forces and chip geometries for tools with different edge preparations. Tool temperatures and tool stresses on the tool rake face were also calculated. M’Saoubi and Chandrasekaran (2004) apply a dedicated charge-couple device (CCD) sensor based on near infrared (0.85-1.1 μm) imaging technique to investigate the effects of tool micro-geometry and coating on tool temperature during orthogonal turning of quenched and tempered steel. Uncoated cemented carbide tools with geometries such as sharp, round, and prehoned flank land, and PVD-coated TiN tools are tested in their experiments. The results show that an increase in edge radius resulted in a certain increase in temperature. Almeida et al. (2005) investigate the effect of tool using CVD diamond direct coated ceramic tools to machine hard metal on tool edge geometry. Their results show that the cutting forces increase with the bluntness of the cutting edge. The film delaminated and edge fractured for the honed edge tools at all tested conditions.
Tool Geometry Effect on Deposition Stress of Diamond-coated Tools

The diamond coating process can produce considerable deposition stress, which is different from intrinsic stress, and can affect adhesion strength, which may directly impact their in-service performance. The formation of the thermal residual stress is attributed to the large mismatch of the thermal expansion coefficients between diamond and substrate. Diamond coating, with a smaller thermal expansion coefficient, is subject to a compressive residual stress while the carbide substrate in tension. The analytical treatment of the thermal residual stress in the coating for the nominal biaxial stress condition is given by Strawbridge and Evans (1995):

\[\sigma_c = \frac{E}{1 - \nu_c} (\alpha_c - \alpha_s) \Delta T \]

(2.2)

where \(\nu_c \) is Poisson’s ratio of the coating, \(\alpha_c \) and \(\alpha_s \) are thermal expansion coefficients for the coating and substrate, respectively, and \(\Delta T \) is the temperature difference between room and deposition temperature. Using data from the literature (2.5 and 5.5 \(\mu \text{m/(m·K)} \) as thermal expansion coefficients for CVD diamond and WC, and 1200 GPa and 0.07 for elasticity and Poisson’s ratio of diamond, respectively), a deposition temperature of 800°C can generate a nominal stress in the coating as high as 3.0 GPa in compression. Such high residual stresses will have a compound impact on the coating performance. Deuerler, Woehrl, and Buck (2006) point out that in some cases, diamond coating even peels off from the substrate right after being cooled down to room temperature, due to the high residual stress.

In addition to material properties, deposition residual stress can also be influenced by tool geometry. Gunnars and Alahelisten (1996) investigate the tool geometry effect on thermal residual stresses in diamond coatings. They report that residual stresses around the substrate edge increase significantly compared to the uniform coating area, and small edge radii will drastically
increase stress concentrations. They further propose that adjusting residual stress can be realized by changing the ratio of edge radius over coating thickness.

The Confound Effect of Combined Tool Geometry, Deposition Stress and Cutting Conditions on Tool Performance

The complicated effects of combined tool geometry, deposition stress, and cutting conditions are not well represented in the literature. Hu, Chou, and Thompson (2007b) present a study on stress analysis of diamond-coated cutting tools to evaluate tool performance. A finite element method was applied to investigate stress distributions focused on the edge radius effect in diamond-coated tools, considering depositions and machining. Their conclusions are, firstly, that the stress concentrations can be alleviated by a large edge radius, and secondly, that imposed machining loading will reverse stresses. A large edge radius at a low feed will reduce the maximum tangential normal stress and exhibits minimal effect at a high feed. Hu, Chou, & Thompson (2008b) later use a simplified 2D finite element (FE) thermo-mechanical model to investigate the stress distributions in diamond-coated tools. Their results show that diamond-coated tools can have high residual stresses from the deposition and concentrate around the cutting edge. Furthermore, mechanical loading tends to lead to stress reversal, which may correlate with tool wear severity.

Machining High-Strength Al-based Materials with Diamond-coated Tools

The high-strength Al-based materials, i.e., the Al-matrix composites and Al-Si alloys, have been widely used in the aerospace and automotive industry for almost three decades, which can be attributed to their enhanced physical properties: wear resistance, fatigue strength, thermal stability, etc. However, due to these superior characteristics, they have proven to be extremely difficult to cut with the conventional tools.
In this research, two Al-based high-strength materials, i.e. an A359/SiC/20p composite and an A390 alloy, are studied. The reinforcement phases in these materials cause rapid, abrasive wear on conventional tools, e.g., cemented carbides, and diamond is considered to be by far the best for machining them. Two types of diamond tools, brazed polycrystalline diamond (PCD) tools and chemical vapor deposition (CVD) diamond-coated tools, are commonly used in the manufacturing industry. A vast body of work has been devoted to investigating the performance of diamond tools in machining high-strength Al-based materials.

Hung, Loh, and Xu (1996) compare carbide tools with CBN and PCD tools and conclude that the carbide tools produce maximum subsurface damage of the machined part and an unacceptable short tool life. More recently, researchers (Durante, Rutelli, & Rabezzanna, 1997; El-Gallab & Sklad, 1998) have reported that only PCD tools and CVD diamond-coated tools can achieve a satisfactory tool life that meets industrial requirement, even though frequent detachment of the coating remains a problem.

Due to some advantages, such as the capability of coating tools with complex geometry and a large surface area and low production costs compared to PCD tools, CVD diamond-coated tools have attracted researchers in metal cutting, though they often demonstrate a shorter tool life than PCD tools. Some researchers have developed new technology to address this issue. Saito et al. (1993) strengthen the adhesion strength of the coating-substrate interface by experiments. They form a thin, solid solution layer which contains a large amount of a metal, excluding cobalt, on the surface of a heat-treated, cemented carbide insert containing a metal belonging to group 4a or 5a in front of the deposition process diamond film. Their machining tests with the Al-18%Si alloy show that the evolution of the flank wear of the CVD diamond tools was comparable to the PCD tools. Oles, Inspektor, and Bauer (1996) employ different pre-deposition
treatments to increase the diamond coating adhesion strength. The authors then conduct machining testing on hypereutectic Si-Al alloys and Al-matrix composites and conclude that CVD diamond tools can meet or exceed the tool life of PCD tools in certain applications but with worse surface finishes. Davim (2002) conducts machining tests on A6061/SiC/20p, and the tests demonstrate that flank wear was the most important type of diamond cutting tool wear. Additionally, he finds that feed performs opposite to the cutting speed in the tool life curves obtained, which demonstrates the importance of selecting moderate cutting conditions, including cutting speed, feed, and depth of cut. Polini et al. (2003) test different types of PCD and CVD diamond-coated tools on dry turning Al-10% Al2O3 MMC, and find that the performance of diamond-coated tools depends on the appropriate combination of substrate microstructure, surface pretreatment, CVD process parameters, and coating thickness. Shen (1996) conducts machining tests on an A390 Al alloy for CVD diamond tools from various sources. These diamond tools varied differently in some characteristics, such as substrates, grain sizes, film thickness, roughness, and thereby adhesion strengths. He reports that only two or three coating sources had good film-to-substrate adhesion and similar machining performance to that of PVD tools.

The wear mechanism of diamond-coated tools is also investigated by many researchers. Karner et al. (1996) attribute the major failure mechanisms of the CVD diamond-coated tools to the flaking of the coating and its sensitivity to the stability of machining conditions. Later on, Yoshikawa and Nishiyama (1999) investigate the wear mechanisms of CVD diamond-coated tools in machining high Si-Al alloys. The results show that the tool life of thin coating was very short due to the easy peeling of the diamond layer. Two stages were observed for the tool wear of a coated insert. In the first stage, tool wear occurs continuously, with diamond grains chipping
and falling off the tool flank face. In the second stage, deep cracks formed in the substrate surface while the remaining coating kept wearing until it eventually peeled off the substrate unexpectedly. Andrewes et al. (2000) examines the tool performances of both CVD diamond-coated tools and PCD tools in an A380 aluminum alloy with 20 vol.% SiC particles turning. He remarks that the initial flank wear on both types of diamond tools and further tool wear in the worn areas were a result of the combination of abrasive wear and adhesive wear mechanisms, which is thought to explain of the faster rate of flank wear observed on the CVD diamond tool. Chou and Liu (2005) conduct machining tests on an MMC A359/SiC/20p bar by using CVD diamond-coated tools with various combinations of cutting conditions. Catastrophic coating failure was the dominant wear mechanism observed and may indicate that the bonding of the coating and the substrate is critical to tool performance. The results also demonstrate that cutting parameters, e.g., cutting speed and feed rate, have a significant influence on the sensitivity of tool wear. Later on, Hu, Chou, and Thompson (2007a) test newly developed nanocrystalline diamond (NCD) coating tools in dry turning a high-strength Al alloy, and compare them with microcrystalline diamond-coated (MCD) tools and PCD tools. The results show that the performance of NCD tools substantially surpasses that of MCD tools and is comparable to that of PCD tools. They confirm that coating delamination is the major tool wear mode for both the NCD and MCD tools.

In addition to experimental studies on machining high-strength Al-based materials with diamond tools, some researchers also focus on theoretical studies, i.e., empirical, analytical, and numerical methods. Pramanik, Zhang, and Arsecularatne (2006) establish an analytical mechanics model for predicting the forces of Al-based SiC/Al₂O₃ particle reinforced MMC turning with PCD tools. In their model, they state that the force generation mechanism was
attributed to three factors: the chip formation force, the ploughing force, and the particle fracture force, which can be obtained by Merchant’s model, slip line field theory, and Griffith fracture theory, respectively. The comparison of the predicted forces and experiment results show that the established model could capture the major material removal/deformation mechanisms in MMC cutting. Ramesh et al. (2001) formulate a transient finite element model of turning an Al6061/SiC metal matrix composite. By applying a novel chip separation criterion, the simulated cutting force results, with small variations, were evaluated and found to be consistent with the experiment findings. Chan et al. (2001) investigate the factors affecting surface generation in the ultra-precision machining of Al6061/SiC MMC by using the finite element method and spectrum analysis. They find that surface roughness and surface integrity could be significantly improved by using high speed and a fine feed rate. The effect of depth-of-cut on surface roughness was negligible, except for the low cutting speed condition. Their non-linear multiple regression model of surface roughness is found to be in agreement with experimental results. In addition, their FEM model proves that it is possible to conjecture stain patterns. Hu, Chou, and Thompson (2007b) apply a finite element analysis to study stress distributions of diamond-coated cutting tools after deposition and machining. After deposition, high residual stress concentrates around the tool edge, compressive for radial components and tensile for tangential components. This stress can be alleviated by increasing edge radius. They also find that at a low feed, increasing the hone radius will reduce the maximum tangential normal stress, while at a high feed the edge radius has minor effects. Hu et al. (2008b) investigate the cohesive zone effects on coating failure evaluations of diamond-coated tools. Their indentation simulation results show that increasing coating thickness will generally increase the critical load for surface cracking but will have a reversal effect when the thickness exceeds a certain value. In addition, thicker coating
tends to reduce interface delamination. Renaud et al. (2008) present a numerical simulation of 3D diamond-coated cutting tools to investigate deposition residual stresses. Via the design of experiments approach and the finite element analysis method, they systematically investigate tool geometry effects on deposition residual stresses and conclude that the cutting edge radius is the most significant factor.

Cohesive Zone Model

Cohesive zone model is used to simulate crack initiation and crack growth in fracture mechanics. The original work can be traced back to the works of Dugdale (1960) and Barenblatt (1962). The traction-separation law, described in cohesive zone model, is to depict the phenomena, where the traction across the interface first increases as the separation increases until the traction reaches a maximum value, then falls down and finally vanishes with the separation reaches the designated value. Detailed information is described in Chapter 6.

Summary

In this Chapter, the fundamentals of metal cutting were summarized, and numerical studies of metal cutting and the machining of high-strength Al-based materials with diamond-coated tools were reviewed. The literature review mainly focused on two aspects, i.e., numerical research of metal cutting and high-strength Al-based materials machining by diamond-coated tools, especially CVD tools.

Due to their superior properties, such as high wear resistance, good fatigue strength, low density, and stable strength at elevated temperatures, hypereutectic Si-Al alloys and particulate-reinforced Al-matrix composites have been used extensively in the automotive and aerospace industries. However, the hard particles, i.e., Si and SiC, embedded in the materials also result in severe abrasive wear and thus decrease tool life significantly during machining. Through
multiple machining tests, brazed polycrystalline diamond tools and CVD diamond-coated tools have been proven to be by far the best choice to machine hard-to-cut materials.

Compared to PCD tools, the CVD diamond-coated tools are regarded as potential replacements because of their much lower production cost and flexibility for making complex geometry tools and coating large areas, even though the majority of studies reported the tool life of CVD diamond-coated tools to be inferior to that of PCD tools. The wear mechanism of CVD diamond-coated tools is primarily coating delamination through continuous abrasive wear on the flank face. It has been found that the CVD diamond tool’s performance might be improved significantly through varying the deposition conditions, properly pretreating the substrate, increasing the coating thickness, and optimizing selection of cutting conditions. It is well known that the diamond coating endures compressive residual stress in the order of several GPa after the deposition because of the much smaller thermal expansion of the diamond compared to the substrate. Some researchers (Stjernberg, 1980; Suzuki & Hayashi, 1981) have proven that tensile residual stress will reduce the transverse rupture strength (TRS) and chipping resistance of the CVD-coated tools at interrupted cutting. However, few studies investigated the effect of diamond-coated tools geometry on deposition stress or the influence on machining.

In the following chapters, the effect of tool geometry on deposition residual stress via finite element analysis will be detailed, and finite element modeling of an orthogonal cutting simulation, including the deposition stress, will be introduced, as well as some investigations using machining tests with various cutting conditions.
CHAPTER 3

FINITE ELEMENT MODELING OF ORTHOGONAL CUTTING

Introduction

The finite element method has been widely used in formulating orthogonal machining processes. Compared to the analytical method, it is better able to solve complicated calculations in metal cutting by incorporating detailed physical parameters, such as material properties involving strain, temperature, friction, etc.

Formulations used in the finite element method of metal cutting are crucial to the simulation results due, to their different internal characteristics. Researchers in metal cutting have applied three kinds of formulations, called the Lagrangian method, the Eulerian method, and the Arbitrary Lagrangian Eulerian (ALE) method. These are detailed in the following section.

In addition, the proper friction model, located between interfaces such as tool-chip and tool-workpiece, is also difficult to formulate. Investigators have developed various models to simulate friction behavior. However, accurate description of this complicated mechanical behavior remains elusive. From the earliest simple friction model, only applied with a coulomb friction coefficient, to the complicated friction models incorporating shear limit and temperature dependence, more researchers are trying to optimize these models. However, available literature shows that all models fail to replicate the obtained results.
Last but not least, the heat transfer involved in metal cutting is one of the most important concerns for researchers. The cutting temperature affects tool wear and tool life such that modeling the thermal behavior effect with precision is essential for simulating metal cutting.

Finite Element Formulations

The Lagrangian formulation method has been employed frequently in the simulation of metal cutting. In the Lagrangian formulation, the mesh will deform following the material. The mesh deforms in time increments, and thus, the mesh domain can be updated based on material coordinates after each time increment. Hence, the finite element simulation can take the history of the material into account by using the updated material point as the initial condition. Apparently, the updated method is costly, since possible element distortion must be minimized so that the calculation can be continued.

The Eulerian formulation is also used often in cutting simulations. Compared to the Lagrangian formulation, the Eulerian formulation constrains the mesh in space and the work material flows through the mesh. The Eulerian method erases the element distortion occurring often in the Lagrangian method, because the mesh is fixed for the whole simulation. The disadvantage of the Eulerian method is that the mesh does not conform to the material, and hence, it is hard to obtain accurate data from free surfaces. However, due to the minimal elements requirement and calculation costs, this method has been applied widely by many researchers in the available literature (Strenkowski & Moon, 1990; Tay, Stevenson, & de Vahl, 1974). The Eulerian formulation does not require failure criterion for chip formation, so element distortion rarely happens. Childs and Maekawa (1990) investigate the tool wear of cemented carbide tools in high speed machining using the Eulerian method, and their results were in agreement with experimental data, except for small errors in cutting forces.
More recently developed, the ALE formulation combines the dual advantages of the Lagrangian method and the Eulerian method. It was first introduced into the finite element method by Belytschko and Kennedy (1978), who apply it to solve some finite strain deformation problems encountered in solid mechanics, where large deformation often happens. Later, Movahhedy, Gadala, and Altintas (2000, 2002) utilize ALE analysis in cutting simulations with a chamfered tool and present a decent chip removal process. Arrazola et al. (2003, 2008) model finite element simulation of the sensitivity of chip formation to the tool/chip friction coefficient using the ALE method. Figure 5 is a typical result of the ALE formulation.

Adaptive Mesh

In machining simulations, there are often element distortions due to large deformation and/or poor mesh. Adaptive mesh is used to decrease the calculation difficulty due to poor mesh by replacing poor mesh with new mesh. This method is comparable to the re-meshing in the ABAQUS standard but with less calculation cost in that the re-meshing and the fine interested area mesh is updated, while adaptive mesh does not change the element numbers in the meshed domain. During adaptive mesh, the nodal and element information will be transferred from the
mesh in the previous step to the new step. Thus, adaptivity is essential to a high quality solution. In reality, adaptive mesh is typically applied at the areas where high strain gradients occur, thereby possibly resulting in extreme element distortion. Proper application of adaptive mesh can minimize calculation difficulty and obtain an accurate solution.

To define an ALE adaptive mesh, Eulerian domains should be defined on the areas where the material can flow in and flow out, and Lagrangian domains ought to be distributed where the mesh follows the material inside. The adaptive mesh method can be defined to the mesh domains so that the mesh can move independently of the material meanwhile keeping the mesh topology. In ABAQUS, users can take advantage of related functions such as mesh frequency and sweep, and the adaptive mesh constrains to optimize mesh quality. The mesh frequency defines how often the re-mesh shall take, and the mesh sweep makes the mesh smoother so the nodes in the domain can be relocated based on the current positions of neighboring nodes and elements to decrease element distortion. Adaptive mesh constraints are used to control the nodes explicitly, to free them from boundary conditions, and thus Eulerian regions can be constructed properly, with fixed nodes.

Contact Algorithms

Two kinds of contact algorithms are defined in ABAQUS Explicit to describe the contact between two surfaces: Kinematic contact and Penalty contact. Kinematic contact is the default setting in ABAQUS, and Penalty contact is used to define more general contact situations.

Kinematic contact is defined using the forces in a pure master-slave contact situation. During simulation, the Kinematic contact algorithm decides which nodes on the slave surface will penetrate into the master surface so that the suitable resistance force can be applied. In this work, the Kinematic contact is applied.
Penalty contact is a common alternative to the Kinematic contact algorithm in ABAQUS. Penalty contact uses one extra element in the model, where no stiffness is considered when a gap occurs between two surfaces. The stiffness will get a high value if contact happens. The Penalty algorithm defines one surface as the master surface and the other as a slave surface, and it can determine which slave nodes might penetrate into the master surface so that it can use corresponding forces on the slave nodes to prevent the possible penetration. In addition, there are three kinds of sliding formulations available in the contact, which are termed finite sliding, small sliding, and infinitesimal sliding. For cutting simulations, finite sliding is the optimum option, since small sliding makes the slave nodes interact in a small local region in the master nodes, while infinitesimal sliding cannot be applied to nonlinear geometry.

Friction Models

Friction force is the tangential reaction force between two surfaces in contact under a normal force. Friction force depends on different aspects, such as contact geometry, the material properties of the contact surfaces, and the relative motion of the contact bodies. Since friction can influence chip formation and heat generation, modeling friction properly is important and has been attracting interest from many researchers in the study of metal cutting. However, there is still no unified friction model which can represent the physics of the metal removal process accurately. The friction existing in metal cutting is complicated because the chip/tool interface depends on variable factors, for instance, cutting speed, feed rate, and tool geometry, such that few investigators can give reliable predictive friction models. Usui and Takeyama (1960) perform cutting experiments to investigate the shear stress and normal stress at the tool rake face so as to formulate a friction model. Figure 6 shows their findings. The shear stress keeps constant
over half of the tool chip contact length close to the tool cutting edge (see AD), termed the sticking region, and then falls to zero over the sliding region (from D to C).

\[\tau = \mu \sigma \] if \(\mu \sigma < \tau_{\text{max}} \) (sliding) \hspace{1cm} (3.1)

\[\tau = \tau_{\text{max}} \] if \(\mu \sigma \geq \tau_{\text{max}} \) (sticking) \hspace{1cm} (3.2)

Thereafter, various friction models at the tool/chip interface were established by some investigators. Ng et al. (2002) and Adibi-Sedeh and Madhavan (2003) present the basic Coulomb friction law. Liu and Guo (2000) investigate the tool chip friction effect on residual stress in the machined layer by employing the limiting shear stress Coulomb friction law. Arrazola, Meslin, and Marya (2003) and Sextro (2002) present devised friction models based on experiments. The Coulomb friction theory describes friction behaviour as a result of two contact surfaces adhering or interlocking with each other; thus, a tangential force is required to allow the two surfaces to slide over one another. Figure 7 shows the basic Coulomb friction law, including the relationship between shear stress and normal stress at the tool chip interface. It can be observed that the
critical shear stress distinguishes the sticking zone and the sliding zone at the tool chip interface. If the contact shear stress is under the critical shear stress, the friction will stay in the sliding region. Otherwise, the rest part of the tool chip contact region is grouped into the sticking zone. As for the limit of the shear stress, a lot of researchers choose $\sigma_y / \sqrt{3}$ as the reference value. σ_y is the yield stress of the work material adjacent to the tool chip interface. For example, Liu and Guo (2000) and Kishawy, Rogers, and Balihodzic (2002) choose this to describe the limiting shear stress. The same reference value is used in this work.

![Diagram of the basic Coulomb friction law](image)

Figure 7. A simple schematic of the basic Coulomb friction law.

In addition to the above model, some researchers (Guo & Liu, 2002; Potdar & Zehnder, 2003) suggest that the friction coefficient should be related to the temperature, since the yield strength affects the critical shear stress differently depending on temperature.

Obtaining the Coulomb friction coefficient has attracted some research. Albrecht (1960) presents his attempt to estimate the friction coefficient along the tool chip interface by eliminating cutting edge effect. Arrazola et al. (2003, 2008) later obtain various friction coefficients with the application of Albrecht’s method. They use variable feed rates to create the plot of the cutting feed force versus the cutting force. They find that higher coefficients exist...
adjacent to the tool tip, while lower ones occur at the contact ending position for the tool chip interface.

Many researchers have attempted to formulate other friction models. Usui and Shirakashi (1982) formulate the friction force as a function of the normal force, which depends on the material combination of workpiece and tool:

\[
\tau_f = k[1 - \exp(-\frac{\mu\sigma_N}{k})]
\]

(3.3)

where \(\tau_f \) is the friction stress, \(k \) is the shear flow strength of the chip at the primary zone, \(\mu \) is the friction coefficient obtained from experiments related to different workpiece tool material combinations, and \(\sigma_N \) is the normal stress. Ozel (2006) later extends the above model with the following modification:

\[
\tau_f = wK[1 - \exp(-\frac{\mu\sigma_N}{wk})^n]^{\frac{1}{n}}
\]

(3.4)

where \(w \) and \(n \) are correction factors used to make the friction stress less than the material shear flow stress.

Heat Generation and Heat Transfer

The heat produced during machining is a critical effect on tool wear, as well as chip formation. Heat generation comes from two sources during machining, i.e., the high plastic deformation occurring in the shearing zone and the friction heat at the tool chip contact interface.

According to the majority of available literature (Mamalis et al., 2001; Shih, 1995), most plastic deformation energy, approximately 90%, is converted to heat. The heat from plastic strain can be expressed as:

\[
Q^{pl} = \eta \sigma_{eq} \dot{\varepsilon}^{pl}
\]

(3.5)
where Q^{pl} is the heat flow rate per unit volume, η is a fraction coefficient of energy converted to heat, σ_{equiv} is the equivalent stress, and $\dot{\varepsilon}^{pl}$ is the plastic strain rate (ABAQUS manual v6.9).

Friction heat from the friction at the tool chip interface can be formulated as:

$$P_{fr} = \tau \dot{\gamma}$$ \hspace{1cm} (3.6)

where P_{fr} refers to the frictional energy dissipation rate per unit area, τ is the frictional stress, and $\dot{\gamma}$ is the slip rate at the chip tool interface.

Heat dissipation between chip and tool along the contact interface decides how much heat goes to chip and tool. It can be represented by:

$$q_{chip} = f_w \eta P_{fr}, \quad q_{tool} = (1 - f_w) \eta P_{fr},$$ \hspace{1cm} (3.7)

where q_{chip} is the heat flux into the chip surface, f_w is the weighting factor between the interacting surfaces, and q_{tool} is the heat flux into the tool surface. f_w is determined by:

$$f_w = \frac{E_{chip}}{E_{chip} + E_{tool}}$$ \hspace{1cm} (3.8)

$$E_{chip,tool} = \sqrt{K_{chip,tool} \rho_{chip,tool} C_{chip,tool}}$$ \hspace{1cm} (3.9)

where K_{chip}, ρ_{chip}, and C_{chip} are the thermal conductivity, density, and specific heat of the chip, respectively, and K_{tool}, ρ_{tool}, and C_{tool} are the thermal conductivity, density, and specific heat of the tool, respectively (Ng et al., 2002).
Heat conduction between chip surface and tool surface is a function of gap conductance, k, and the temperatures of the surfaces, θ_A and θ_B. The heat flow rate per unit area can be formulated as:

$$q = k(\theta_A - \theta_B)$$ \hfill (3.10)

The gap conductance is dependent on the average temperature on the surfaces, gap clearance, d, surface pressure, p, and the average of any predefined field variable (ABAQUS manual 6.8). In this research, the gap conductance is a function of the gap clearance, d, shown in Figure 8.

Summary

In this chapter, finite element modeling of orthogonal cutting is introduced. The main portions of finite element modeling for orthogonal cutting, such as adaptive mesh for decreasing element distortion, contact algorithms in dynamic simulation, common friction models for metal cutting, and heat generation and heat transfer during cutting, are described. These lay the fundamentals for later finite element modeling of cutting simulation with a diamond-coated tool.
CHAPTER 4

2D CUTTING SIMULATIONS WITH A DIAMOND-COATED TOOL INCLUDING DEPOSITION RESIDUAL STRESSES

Introduction

Advanced surface engineering technologies such as chemical vapor deposition (CVD) have been widely applied for wear resistant functions. CVD-grown diamond films have also been explored for various tooling applications. Coating delamination has been identified as the major failure mode of CVD diamond-coated tools (Chou & Liu, 2005). High thermal and mechanical loading during machining and insufficient coating adhesion result in coating failure and catastrophic wear. Moreover, the thermal mismatch between the diamond coating and the carbide substrate generates high residual stresses, on the order of GPa, in the tool. Besides, the cutting edge results in severe stress concentrations around the tool tip, which will strongly affect the tool performance (Renaud et al., 2008).

While the cutting edge geometry affects the deposition stresses around the tool tip, it also complicates the thermal and mechanical loads imposed during machining. The radius edge can significantly affect the chip formations and stress/temperature fields, especially when the uncut chip thickness is close to or smaller than the edge radius, known as the “size effect” (Schimmel, Endres, & Stevenson, 2002; Fang & Xiong, 2008).

The literature on cutting edge effects on diamond-coated tool performance is limited. Almeida et al. (2005) investigate edge preparations of diamond-coated tools in machining hard metals. Three types of edge conditions, up-sharp, chamfer, and hone, were tested. The edge...
conditions are found to be significant in machining forces, wear pattern, and tool life. The authors report that coating delamination occurred first at the honed tool. Hu et al. (2007) investigate stress evolutions in a diamond-coated tool using 2D analysis, from deposition to machining, with simplified machining load conditions. It is reported that at a low feed, increasing the edge radius will reduce the maximum circumferential normal stress. However, the edge radius seems to have minor effects at a high feed. It has been demonstrated that the edge radius plays a critical role in machining by diamond-coated tools (Qin et al., 2009). In particular, at the 1.3 m/s and 0.15 mm/rev condition, a 65 µm hone extends the tool life 5 times over the 5 µm sharp tools, though tools of either radii have a similar tool wear results at the 4 m/s and 0.05 mm/rev condition.

It is not clear how the cutting edge affects the machining performance of diamond-coated tools. To effectively use diamond-coated tools, it is essential to understand the combined effects of the edge radius, due to the film deposition during subsequent machining. Compared to experimental approaches, numerical simulations for studying machining processes are more affordable. Finite element (FE) modeling has been applied frequently in machining simulations. Mackerle (1999) compiles a bibliography of literature about most machining simulations. The studies can be grouped into the following topics: (i) material removal and cutting processes in general, (ii) computational models for specific machining processes, (iii) the effects of geometric and process parameters, (iv) thermal aspects in machining, (v) residual stresses in machining, (iv) dynamic analysis and control of machine tools, (vii) tool wear and failure, and (viii) the chip formation mechanism. In general, there are two types of models for numerical analysis in modeling deformation processes: Eulerian and Lagrangian. The Lagrangian method requires the computational grid to deform with the material, while the Eulerian requires the grid to be fixed in

Literature focused on machining simulations with CVD diamond-coated tools is rather rare. Furthermore, cutting simulations have not considered deposition residual stresses. In this Chapter, orthogonal cutting simulations with a diamond-coated tungsten carbide (WC) tool are developed to include residual stresses in the tool from depositions. The objective is to numerically investigate the combined deposition and machining effects on the thermal and mechanical states of diamond-coated tools in 2D cutting. In particular, the role of the edge radius and its impact on resultant interface stresses at different cutting conditions are emphasized. First, FE modeling is used to evaluate the deposition stresses in tools with different edge radii. Second,
the tool with deposition stresses is imported into FE software to continue cutting simulations under different cutting conditions. The coating-substrate interface stresses were further analyzed.

Deposition Stress Analysis

Model and Simulations

Diamond-coated cutting tools were modeled in ABAQUS/CAE version 6.8, according to a simplified geometry: 2D inserts that are 2 mm wide and 1 mm thick with a 79° wedge angle and different edge radii, 5 or 50 µm. The diamond coating on the substrate has a uniform thickness at the rake, 15 µm, and at the flank surface, the coating extends to the substrate bottom. The CAD models of the tool (substrate and coating) are then imported into ABAQUS/Explicit for thermal stress simulations. Four-node bilinear displacement and temperature quadrilateral elements (CPE4RT) are used for structural analysis.

Convergence Test for a Typical 2D Insert

The tested 2D insert has an edge radius of 50 µm and a coating thickness of 15 µm (re50t15). The wedge angle and the other geometry parameters are the same as specified in the prior section. In this convergence test, two simulation schemes, couple thermal displacement in standard mode and dynamic couple thermal displacement in explicit mode, and three specifications of mesh density, 3 layers, 5 layers, and 15 layers, on coating, are investigated. Deposition condition is the same condition as shown above. In this convergence test, stress contours along the Y direction are compared. Interface stresses located at the coating side are examined. The interface stress extracted method can be referenced in Renaud et al. (2008).

Figure 9 demonstrates the σ_y component result of the static mode and explicit mode for two different coating layers, 3 and 15. From the contours, it can be observed that the stress are very close even though the explicit mode is not as smooth as the standard mode.
Figure 9. σ_y component result of standard mode and explicit mode for different coating mesh density (unit: MPa).

A quantitative comparison is made according to the interface stress-normal stress normal to the interface termed σ_r. Interface stress is converted from the Descartes coordinate system to the polar coordinate system. The positive direction points from the intersection of the radius and the rake face with the flank face. Figure 10 schematically illustrates the interface stress components to be extracted from simulations results, including three components: radial normal stress (σ_r), circumferential normal stress (σ_θ), and shear stress ($\tau_{r\theta}$).
Figure 10. A schematic drawing showing the interface stress components around the edge area.

Figure 11 plots the interface stress results at different modes. It is observed that the larger the number of mesh layers on the coating the higher interface stress σ_r. Furthermore, simulation modes do not significantly affect the interface results.

Figure 11. Interface stress comparison for re50t15 under different simulation modes and three various mesh densities.
Figure 12 (unit: GPa) is the column contour of the maximum interface stress σ_r for the three mesh densities under the two simulation modes.

![r50t15 Max σ_r comparison](image1)

Figure 12. Maximum σ_r comparison for different conditions.

Figure 13 plots the ratio of the three explicit mode results with the reference value, which is valued from 15 layers of mesh density under the explicit mode. Three and five layers of mesh result in 19% and 10% distance from the reference value, respectively.

![r50t15 Max σ_r comparison under explicit mode](image2)

Figure 13. Comparison with the reference value of 15 layers mesh density.
However, due to limitation of the computation facility, three layers of mesh is chosen as the consistent consideration. The following section continues the residual deposition stress simulation for the explicit mode and its result.

Explicit dynamic analysis considering thermal strains is conducted. A uniform deposition temperature of 800°C was set as the initial condition, and a room temperature of 25°C was set as the final temperature. Linear-elastic material models independent of temperatures are used for both diamond and WC tools. The elasticity, Poisson’s ratio, and the thermal expansion coefficient of diamond (Heath, 1986) and WC (Amirhagni et al., 2001) are 1200 GPa, 0.07, 2.5 µm/(m·K), and 620 GPa, 0.24, 5.5 µm/(m·K), respectively. After the model setup, the analysis is executed to obtain displacement, strain, and stress data.

Figure 14 shows the stress contours (σ_y component, parallel to the rake, unit: MPa) in a diamond-coated tool with a 50 µm edge radius. It can be noted that the stress in the coating, away from the edge is about 3.5 GPa in compression, which is consistent with the previous analysis (Hu, Chou, & Thompson, 2007b). Moreover, the stress distribution around the tool edge shows considerable stress concentration.
Further, the stress data along the interface can be extracted and then transformed into the local polar coordinate to evaluate the interface stresses along the cutting edge, including three components: the radial normal stress \(\sigma_r\), the circumferential normal stress \(\sigma_\theta\), and the shear stress \(\tau_{r\theta}\), which are functions of the location. The procedures were detailed in Renaud et al., (2008). The deposition stress profiles at the interfaces will be shown in the following cutting simulation section.

Cutting Simulations

Modeling Details

The modeled diamond-coated tool is then imported into the cutting simulation, carrying the deposition stress states. The ALE formulation is adapted for orthogonal cutting simulation, also using the ABAQUS/Explicit. The same element type (CPE4RT) is used for the workpiece. The cutting tool is assumed as a deformable body. The Coulomb friction model between the workpiece and the diamond coating is implemented with a frictional coefficient of 0.6. The variable friction modeling is composed of the sticking region and the sliding region with parameters \(\mu\) and \(K_{\text{chip}}\) \((K_{\text{chip}} = 143\text{MPa}, \mu=0.6)\), which can be referenced in the work of Ozel & Zeren (2007). The heat flowing into the chip is obtained using the following analysis (Ng et al., 2002):

\[
\begin{align*}
 f &= \frac{E_c}{E_c + E_t}, \\
 E_{t,c} &= \sqrt{K_{t,c} \rho_{t,c} C_{p,c} },
\end{align*}
\]

where \(K_{c,d}\) is the thermal conductivity of the chip or tool, \(\rho_{t,c}\) is the density of the chip or tool, \(C_{p,c}\) is the specific heat of the chip or tool, and the fraction of the heat energy conducted into the chip is calculated as \(f = 0.75\).
The Johnson-Cook (J-C) material constitutive model is implemented for its simplicity and the availability of material parameters (Johnson & Cook, 1983). The J-C constitutive model, applied for metal deformation simulations with large strains, high strain rates, and high temperatures, is used for AA356-T6 as the workpiece material. It can be expressed as:

$$\sigma = (A + B \varepsilon^*)(1 + C \ln \tilde{\varepsilon}^*)(1 - T^{*m})$$, \hspace{1cm} (4.3)

where σ is the stress, ε is the equivalent strain, $\varepsilon^* = \tilde{\varepsilon} / \tilde{\varepsilon}_0$ is the dimensionless strain rate, and A, B, C, n, and m are the material constants from Sartkulvanich, Sahlan, and Altan (2007), listed in Table 1 below. T^{*m} is equal to $(T - T_r)/(T_m - T_r)$ where T_r is a reference temperature (20 °C) and T_m is the melting temperature of the workpiece. Other general material properties for the substrate, the coating and the workpiece, are listed in Table 2.

Table 1

Surface Workpiece Material Constitutive Constants

<p>| Material Constants for J-C model (AA356.0-T6) |
|-----------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>A (MPa)</th>
<th>B (MPa)</th>
<th>C</th>
<th>N</th>
<th>m</th>
<th>Tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>477</td>
<td>0.0067</td>
<td>0.144</td>
<td>1.62</td>
<td>585</td>
</tr>
</tbody>
</table>

Table 2

Material Properties

<table>
<thead>
<tr>
<th>Items</th>
<th>(AA356.0-T6)</th>
<th>WC-Co</th>
<th>Diamond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s modulus, E (GPa)</td>
<td>72.4</td>
<td>620</td>
<td>1200</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>0.33</td>
<td>0.24</td>
<td>0.07</td>
</tr>
<tr>
<td>Thermal conductivity, (W/m-°C)</td>
<td>151</td>
<td>84.02</td>
<td>900</td>
</tr>
<tr>
<td>Specific heat (J/g-°C)</td>
<td>0.963</td>
<td>2</td>
<td>0.509</td>
</tr>
<tr>
<td>Density (g/mm3)</td>
<td></td>
<td>15.8</td>
<td>3.5</td>
</tr>
<tr>
<td>Thermal expansion (m/m-K)</td>
<td></td>
<td>5.5E-6</td>
<td>2.5E-6</td>
</tr>
</tbody>
</table>
The tool is modeled as an orphan mesh deformed part and imported from the previous deposition stress analysis result. Here, the assembly is different from general ALE cutting simulations with a coated tool. Because the tool deforms in the deposition stress simulations, it is challenging to make the workpiece match the tool perfectly. In the case of mesh penetration, the initial contact does not match perfectly with the outer profiles of the workpiece and the tool. A small distance was added between the tool rake face and to the right side of the initial chip to minimize assembly difficulty. This method is practical and only needs some additional cutting time to reach steady state. The assembly of the workpiece and the tool is shown in Figure 15.

![Figure 15. Assembly of workpiece and tool.](image)

In the cutting simulation, the ALE method is employed. The material flows in from the left side of the workpiece and exits at the right side of the workpiece and the top side of the chip. Thus, the right side and left side of the workpiece and the top of the chip are defined as the
Eulerian boundaries. Other boundaries on the workpiece are defined as Lagrangian boundaries. Adaptive mesh constraints are used to constrain the inflow boundary in the x and y directions, to constrain the outflow boundary in the x direction, and to constrain the chip flow boundary in the y direction. Constraints are also imposed at the top surface of the tool material in the y direction and at the right side of the substrate in the x direction. The workpiece material is constrained in the y direction. The material flows in at the cutting speed. The initial temperature of the workpiece is 20 °C. The workpiece deformation zone region is defined as the adaptive mesh domain. The established ALE method was first validated against known results from the literature (Kishawy, Deiab, & Haglund, 2008) using a cemented carbide tool and AISI 4140 steel workpiece. The cutting parameters are 0.2 mm uncut chip thickness (h) and 200 m/min cutting speed (V). The differences between the current results and the literatures in the maximum von Mises stresses and tool temperatures are less than 4 %.

Once validated, cutting simulations with a diamond-coated tool inherited with deposition stresses are conducted. The initial stress state of the tool comes from the residual deposition stress analysis. Two levels of edge radii (r_e), 5 µm and 50 µm, and two different cutting conditions were tested: (1) 3.0 m/s (V) and 0.05 mm (h), representing the thermal-load dominant case, and (2) 1.0 m/s (V) and 0.15 mm (h), for the mechanical-load dominant case. The rake and relief angles were 0° and 11°, respectively. The set simulated cutting time is 0.3 ms. A total of 529 CPE4RT elements are distributed in the workpiece. Mesh needs to be denser close to the edge radius. The elements and properties of the tool are the same as in the residual deposition stress analysis. For a larger uncut chip thickness, more elements should be used in the primary shear zone.
Results and Discussion

Figure 16 illustrates an example of typical stress contours (von Mises stress) from the simulation. The parameters in this specific case were 3 m/s (V) and 0.05 mm (h) and a 5 µm edge radius. It can be seen that high deposition stresses are still dominant, only marginally altered by the cutting load in this gentle cutting condition. As shown in Figure 16b, the stress level in the chip is substantially lower than the tool stresses.

Figure 16. An example of simulated stress contours (v=3.0 m/s, h=0.05 mm, r_e=5 µm): (a) overall and (b) chip and workpiece.

A case (3 m/s, 0.05 mm) without deposition stresses in the tool was also tested for comparison purposes. The tool still has the diamond coating and the WC substrate with the same
properties. Figure 17 demonstrates the importance of the deposition residual stresses (unit: MPa), showing much greater first principal stresses for the case with deposition stresses included. Moreover, unreasonably high stress concentrations occur around the edge area for the case without deposition stresses considered.

Figure 17. Stress contour comparisons (v=3.0 m/s, h=0.05 mm, r_e=5 µm): (a) with deposition stresses; (b) without deposition stresses.

Figure 18 compares the first principal stress (unit: MPa) contours at different edge radii and different cutting conditions. It shows higher stress concentrations at the coating interface. A
similar phenomenon was also reported in previous research (MacGinley & Monaghan, 2001). This tends to increase the possibility of cracking in the coating. It is also noted that a smaller edge radius may result in a higher level of stress, especially at larger uncut chip thickness.

Figure 18. First principal stress contours at different conditions: (i) 3 m/s, 0.05 mm: (a) \(r_e = 5 \mu m \), (b) \(r_e = 50 \mu m \); and (ii) 1 m/s, 0.15 mm: (c) \(r_e = 5 \mu m \), (d) \(r_e = 50 \mu m \).

Figure 19 compares tool temperature distributions from different simulation cases. Under the current simulated cutting conditions, tool temperatures seem to be typically low. Increasing the uncut chip thickness will elevate the cutting tool temperatures. In addition, increasing the edge radius will also increase the tool temperature and the maximum temperature at the edge rounding area. Due to the size effect, for smaller uncut chip thicknesses, the high temperature
concentrates around the cutting edge because of the chip-tool contact length. The high temperature shifts from the rake face toward the round edge when the edge radius is greater than the uncut chip thickness. Possibly, it is due to the workpiece material flowing downward along the tool edge profile, and which is then compressed into the bulk material beneath the tool (Yan, Zhao, & Kuriyagawa, 2009).

![Tool temperature distributions at different conditions](image)

Figure 19. Tool temperature distributions at different conditions: (i) 3 m/s, 0.05 mm: (a) $r_e=5$ µm, (b) $r_e=50$ µm; and (ii) 1 m/s, 0.15 mm: (c) $r_e=5$ µm, (d) $r_e=50$ µm.

The interface stresses are crucial to coating delamination. Thus, the interface stresses around the cutting edge are further analyzed.
Figure 20. Interface stress profiles at different conditions: (a) radial and (b) circumferential normal components.

Figure 20a plots the interface radial normal stresses around the tool edge at 4 different conditions, plus the stresses due only to deposition. First, the edge radius effects on the radial
normal stresses are evident, as reported before. Moreover, at a smaller uncut chip thickness, the stress level is marginally reduced by contact stress from the chip. The maximum σ_r is in a close range between different edge radii. However, at a larger uncut chip thickness, the radial normal stresses change noticeably due to machining, especially high tensile stresses close to the end of the edge rounding (transition to flank surface). It is noted that the maximum σ_r is greater for the 5 μm edge: 1.2 GPa vs. 0.9 GPa for 50 μm.

The circumferential normal stress profiles around the edge are shown in Figure 29b for different conditions, also including plain deposition stresses, ~ 3 GPa in compression. Again, a smaller uncut thickness has little effect on stress, and the edge radius effect is minor. However, a larger uncut thickness will induce more compressive stresses, and the larger edge radius shows a greater compressive stress at the edge end close to the flank side.

A previous experimental study (Qin, 2009) shows that at a small feed, the edge radius has little effect on diamond-coated tool wear. However, at a larger feed, a larger edge radius can extend tool life drastically. Results from the previous and current studies indicate that the edge radius effects on the interface stresses may play a crucial role to delamination wear of diamond-coated tools.

The following section comes from the work of Ivester et al. (2012), which provides a detailed experimental validation for the 2D cutting simulation.

Experimental Validation

Cutting Tool Preparations

The substrates used for the diamond coating experiments are grooving type inserts (A4G-U-B-6) from Kennametal Inc. The insert material selected was fine-grain WC with 6 wt.% cobalt (K68 from Kennametal). The edge radius of cutting inserts, measured by a white-light
interferometer, NT1100 from Veeco Metrology, was about 25 µm. To facilitate temperature measurements (by infrared thermography), the side relief surface near the cutting edge is precision-ground to flat.

For the coating process, diamond films are deposited using a high-power microwave plasma-assisted CVD process. A gas mixture of methane in hydrogen is used as the feedstock gas. Nitrogen, maintained at a certain ratio to methane, is inserted to the gas mixture to obtain nanostructures by preventing cellular growth. The pressure is about 90 Torr, and the substrate temperature is about 800°C. The coated inserts are further inspected by the interferometer to measure the edge radius and to estimate the coating thickness. The coating thickness was estimated between 20 and 25 µm. Surface roughness, R_a, is about 0.5 µm for coated tools.

Workpieces

The workpieces are thin disks (127 mm diameter, 3 mm thick), with a hub (25.4 mm diameter), precision machined from a bar stock made of an A356 aluminum alloy that was cast and heat treated (supplied by General Motors). This particular alloy is chosen because of the material properties reported in studies using it in FE cutting simulations (Sartkulvanich, Sahlan, & Altan, 2007).

The 2D cutting test-bed is modified from an Edgetek grinding machine, with multiple sensors added. Figure 21a shows the machine, and Figure 21b shows the cutting tool and workpiece arrangement in the machine.
Figure 21. Experiment setup: (a) 2D orthogonal cutting test-bed, and (b) Workpiece and tool arrangement in the machine.

Figure 22. Setup for workpiece and tool: (a) Closed-up view of tool and workpiece setup, and (b) Side view of a diamond-coated tool tip.

Figure 22 depicts (a) the setup of a diamond-coated tool and the disk-shaped workpiece, and (b) the side view of a diamond-coated tool tip. A digital oscilloscope records the dynamometer signals at a sampling rate of 2 MHz before down sampling to 500 Hz for analysis. A high speed visible light camera (shutter speed of 30 000 frames per second (fps), integration time of 33 μs) and a medium speed infrared camera (600 fps shutter speed, 10 μs to 25 μs integration time, 3 μm to 5 μm wavelength) simultaneously record the cutting process. The disk-shaped workpiece rotates on the horizontal spindle and moves on a vertical axis (feed direction).
Synchronizing the dynamometer, the visible light camera, and the infrared camera signals by reading each signal with an oscilloscope at 2 MHz sampling rate provides confidence the signals represent nearly identical instances in time. Further details are described by Heigel, Ivester, and Whitenton (2008).

Testing Parameters

The toolholder used is an A4SML 160624, 25.4 mm steel shank holder. The resulting cutting geometry is 7° of rake angle and 4° of relief angle. The uncut chip thickness (h) value is 0.15 mm. The cutting speed (V) tested is 5 m/s. The linear cutting length is over 5 revolutions, to be sure of full uncut thickness. The machining is conducted at room temperature without coolant. In each cutting test, cutting forces and tool temperatures are acquired and further analyzed using MATLAB scripts developed at NIST (Ivester, 2011). For infrared temperature measurements, the emissivity of diamond-coated tools is determined by heating up the tools to a range of temperatures and measuring them with a thermocouple and an infrared camera. The emissivity is between 0.72 and 0.79 for a temperature range of about 150°C to 200°C. Linear extrapolation is used for the temperature range outside of the emissivity testing range.

Experimental Results and Discussion

The post-processed data from the experiment is plotted and compared. The section below presents the cutting variable plots/contours for different cutting conditions. Figure 23 shows the cutting force history from a typical cutting test with steady state forces of about 400 N and 200 N for the cutting and thrust components, respectively. The side force is close to 0, as expected. Figure 24 shows the temperature, at a specific tool location, along the cutting time. Tool temperature distributions at different times are also shown as thermal images. The temperature
contours during the steady state cutting period are averaged to obtain the mean temperature distribution at the tool tip area (insert below the curve in Figure 24).

![Thrust force vs Time graph](image)

Figure 23. Cutting force history from one set of testing.

![Temperature history graph](image)

Figure 24. Temperature history at a specific tool location; inserts are thermal images at different times.

Figure 25 displays the temperature distribution at the tool tip (an approximately 1.2 mm by 1.6 mm area). The tool edge profiles are recognizable from the contours. The infrared spectrum camera obtains 120 pixel by 160 pixel video frames at approximately 300 frames per
second with 49 µs integration time (Ivester, 2011). The maximum temperature is around 300°C. Note that all temperature fields are converted to true temperatures using the linear emissivity of the tools (diamond-coated tools). Therefore, the chip temperature information may not be correctly represented.

Figure 25. Cutting tool temperature contours at different uncut thicknesses.

Simulation Comparison

For comparison with the experiment, FE simulations of 2D cutting with a diamond-coated tool are realized using ABAQUS software. The simulation parameters are 25 µm edge radius, 20 µm coating thickness, 5 m/s cutting speed, and 0.15 mm uncut chip thickness. Simulation results are shown in the following context. Figure 26 plots the von Mises stress contours during cutting, (a) in the workpiece and chip, and (b) in the diamond-coated tool. It is noted that the stress level in the primary shear zone is on the order of 300 to 400 MPa; however,
the tool has a very high localized stress, over 7 GPa, in the edge-flank transition area. Note that the residual stress from the diamond deposition can be as high as 4 GPa, observed from the previous analysis. Cutting forces calculated from the simulation are 162 N and 72 N of the cutting and thrust components for 1 mm uncut width, respectively, which is comparable to the experimental results (128 N and 73 N per mm width of cut).

Figure 26. Stress contour from cutting simulations: (a) Workpiece and chip, and (b) Tool alone (unit: MPa).

Figure 27 plots the temperature contours, (a) for the tool-chip-workpiece, and (b) for only the tool. The maximum tool temperature is around 330°C, compared to 275°C from the experiment. Note that the cutting simulation was 2D, and thus, did not consider heat transfer along the in-plane direction, which deviates from the actual cutting and its inevitable heat loss parallel to the cutting edge direction. Hence, the higher simulated cutting tool temperature may be due to such a departure.
Figure 27. Cutting tool tip temperature contours: (a) Overall, and (b) Tool alone (Unit: °C).
Summary

It is well known that edge radius has a complex effect on diamond-coated tool performance. The edge radius affects both deposition residual stresses and machining loads, and the combined effects result in the sophisticated thermo-mechanical behaviors of diamond-coated tools in machining. In this study, 2D cutting simulations with a diamond-coated tool are developed. The deposition residual stresses in the coated tool are first simulated, and the model results are carried over into the cutting simulations. The simulations are used to evaluate the edge radius effects on cutting tool stress contours and temperature distributions, as well as interface stresses.

The major findings can be summarized as follows: (1) The deposition residual stresses can remain dominant in gentle cutting, e.g., small uncut chip thicknesses. At a small uncut chip thickness, the stress level is marginally reduced by the contact stress from the chip. The maximum σ_r is in a close range between different edge radii. (2) However, at a large uncut chip thickness, the radial normal stresses change noticeably due to machining, especially high tensile stresses close to the end of edge rounding (transition to flank surface). It is noted that the maximum σ_r is greater at the 5 µm edge, 1.2 GPa as compared to 0.9 GPa at the 50 µm edge. (3) A large uncut chip thickness induces more compressive stresses to the circumferential normal stress, and such phenomenon is more evident for a large edge radius. Future work will include a wider cutting speed range, as the associated higher temperatures will greatly influence thermal stresses in diamond-coated tools. In addition, cutting experiments will be designed to validate the simulation model. (4) Experiments conducted by NIST researchers present comparable results when studying cutting forces. As for cutting temperature, the maximum tool temperature is around 330°C, as compared to 275°C in the experiment. Note that the cutting simulation was 2D.
and did not consider heat transfer along the in-plane direction; this deviates from the actual cutting, with inevitable heat loss parallel to the cutting edge direction. Hence, the higher simulated cutting tool temperature may be due to such a departure.
CHAPTER 5
CUTTING TOOL GEOMETRY EFFECT ON DIAMOND-COATED CUTTING TOOL PERFORMANCE

Introduction

Diamond coatings using technologies such as chemical vapor deposition (CVD) are replacing costly polycrystalline diamond cutting tools in machining abrasive lightweight materials. It has been shown that coating delamination, often occurring prematurely, is the major failure mode of CVD diamond-coated tools (Chou & Liu, 2005). High thermal and mechanical loading during machining and insufficient coating adhesion results in coating failure, and then the exposed substrate encounters massive deformation and catastrophic wear. Moreover, in CVD processes, the thermal mismatch between the coating and substrate materials generates high residual stresses in the tool. Diamond coatings, with a smaller thermal expansion coefficient, receive compressive residual stress on the order of GPa; however, the substrates, generally cobalt (Co)-cemented tungsten carbide (WC), receive a tensile stress. Such a high level of deposition residual stresses may impact coating functions (Kitamura, Hirakata, & Itsuji, 2003). Moreover if any geometry features changes, such as edges, the local stress fields may be severely altered (Gunnars & Alahelisten, 1996).

The edge radius has a significant effect on the chip formations and cutting processes. A significant number of studies related to the effects of edge radius on chip formations, friction conditions, and part surface integrity, etc., have been widely studied (Fang & Xiong, 2008; Nasr, Ng, & Elbestawi, 2007; Thiele et al., 2000; Tian & Shin, 2004). Most studies indicate that the
normal force increases with the edge radius and it is much more sensitive to the edge radius size compared to the cutting component.

Literature on cutting edge effects on coating tool performance is limited. Bouzakis et al. (2003) study the wear behavior of physical vapor deposition (PVD) coatings on cemented carbide inserts with various cutting edge radii in milling. The authors claim that increasing the cutting edge radius can lead to a longer tool life. Rech et al. (2004) investigate the effects of the edge radius of PVD coated tools upon chip formation and tool stresses in the orthogonal cutting of steel. The authors report that an optimum cutting edge radius exists that minimizes tool stresses, especially within the coating layer, and prolongs tool life. Almeida et al. (2005) investigate the effects of edge radius preparations on diamond-coated tools in machining hard metals. Their experiments utilized three types of edge conditions: up-sharp, chamfer, and hone. The results show that the edge conditions have a significant influence on machining forces, wear pattern, and tool life, etc. The honed tool yields to coating delamination first among all three edge types. Hu, Chou, and Thompson (2007b) use a 2D finite element analysis to investigate stress evolutions of a diamond-coated tool from deposition to machining with simplified machining load conditions. They find that at a low feed, the edge radius increase will reduce the maximum circumferential normal stress while producing minor effects at a high feed.

How the cutting edge affects the machining performance of diamond-coated tools is still difficult to determine. The fabrication of coated tools uses off-the-shelf substrates, and the tool edge geometry has not been integrated into the coating tool design. To effectively use diamond-coated tools, it is necessary to understand the effect of edge radius on machining. In this study, WC-Co cutting inserts with different edge radii are investigated. The inserts are commercial WC-Co cutting inserts with different edge radii which are diamond-coated and further tested in
composite machining. Cutting force is analyzed and tool wear is evaluated. The goal is to analyze how the cutting edge geometry affects the coating tool wear due to machining loads at different conditions.

Machining Investigation

Experimental Details

The substrates used in the diamond coating experiments are also square-shaped inserts (SPG422), as in the deposition stress analysis. The insert material selected is fine-grain WC with 6 wt% cobalt (K68 from Kennametal). Four levels of edge radii are evaluated: nominally, 5µm, 15µm, 30µm, and 65µm. The edge radius of cutting inserts prior to coating is measured by a white-light interferometer, NT1100 from Veeco Metrology. Measurement results indicate that the edge radii average at: 3.79µm, 13.7µm, 29.8µm, and 66.4µm. Figure 28 shows examples of cutting edge images from the interferometer. Surface textures of the inserts are also assessed by the interferometer, with surface roughness analyzed. It is shown that the surface roughness of the inserts is in a similar range, 0.29µm to 0.32µm of Ra.
Figure 28. Cutting edge images under white interferometer.

(a) 5 µm edge radius

(b) 65 µm edge radius
For the coating process, diamond films are deposited using a high-power microwave plasma-assisted CVD process. A gas mixture of methane in hydrogen is used as the feedstock gas. Nitrogen, maintained at a certain ratio to methane, is inserted into the gas mixture to obtain the appropriate nanostructure by preventing cellular growth. The pressure is about 90 Torr, and the substrate temperature is about 800 °C. The coated inserts are further inspected by the interferometer to measure the edge radius and to estimate the coating thickness. Figure 29 shows examples of cutting edge images of coated tools. The coating thickness is estimated between 5 and 8μm. Surface roughness, Ra, is about 0.5 μm for coated tools. A computer numerical control lathe, Hardinge Cobra 42, is used to perform machining experiments, outer diameter turning, to evaluate the tool wear of diamond-coated tools. With the tool holder used (CSRNL-164D), the diamond-coated cutting inserts form a 0° rake angle, a 11° relief angle, and a 75° lead angle. The workpieces are round bars made of an A359/SiC-20p composite. The set-up of the experiment is shown in Figure 30. Two machining conditions are used: one is 4 m/s and 0.05 mm/rev, and the other is 1.3 m/s and 0.15 mm/rev. The depth of cut is set at 1 mm. Machining is conducted at room temperature without coolant. For each machining condition, two tests are repeated. During machining testing, the cutting inserts are periodically inspected by optical microscopy to measure flank wear-land. Worn tools after testing are also examined by scanning electron microscopy (SEM). In addition, cutting forces are monitored during machining using a Kistler dynamometer.
Figure 29. Cutting edge images of coated tools under white interferometer.
Figure 30. Experiment setup in CNC machine.

Cutting Forces

Figure 31 shows cutting forces during initial cutting (first pass) at 4 m/s and 0.05 mm/rev for 2 different edge radii. The force values of all 3 components, tangential (Ft), radial (Fr), and axial (Fa), are reasonably steady during the entire pass. Even the signal seems to be a little noisy, the further FFT with the force signal is analyzed but no specific frequency content to the data is found.
Figure 31. Cutting forces at 4 m/s and 0.05 mm/rev for two types of edge radii.

For the 65 µm radius tool, cutting forces were higher than those from the sharp tool, in particular, the radial component.

Figure 32 shows cutting forces at 1.3 m/s and 0.15 mm/rev for different edge radii. The force increasing due to the edge hone is less than that in the 4 m/s and 0.05 mm/rev condition. It
is noted that for the sharp tools, cutting forces show a step increase during cutting. This may be caused by the high deposition stresses combined with the high mechanical load.

Figure 32. Cutting forces at 1.3 m/s and 0.15 mm/rev for two types of edge radii.
Figure 33 compares cutting force increases with the edge radius at two different machining conditions. The force ratios are obtained by normalizing with the forces from the 5 µm radius tools. It is noted that (1) the normal force, \(F_n \) (resultant of \(F_r \) and \(F_a \)), shows a higher rate compared to the cutting force \(F_t \), and (2) the increasing rate is much greater at a small feed.
Figure 34 shows tool wear, specifically flank wear-land width (VB), along cutting time at the 4 m/s and 0.05 mm/rev condition for different edge radii. Results of two replicates are shown. In general, the tools show a gradual increase of tool wear followed by an abrupt increase of wear-land in one or two passes. It is believed that, during that specific passes, coating delamination occurred and resulted in rapid wear of the exposed substrate material. Tool wear and the onset of coating delamination (abrupt wear increase) are dependent on the edge radius. The tools with 5 µm and 15 µm substrate edge radii have similar wear growth curves. Sixty five µm radius tools show slightly greater wear resistance and delay of delamination-induced catastrophic wear. Surprisingly, the 30 µm radius tools result in the poorest tool life. Figure 35 shows flank wear-land width (VB) versus cutting time at the 1.3 m/s and 0.15 mm/rev condition for different edge radii. The tools with 5 µm and 15 µm substrate edge radii have a rather rapid linear wear growth and the shortest tool life. The 5 µm tool also shows a high initial wear which
might be caused by the high deposition stress and result in a significant increase in force (Figure 32). The 30 µm tools show a somewhat better tool life, but most strikingly, 65 µm radius tools demonstrate significantly delay of abrupt wear. A general trend can be noted: the larger the edge radius, the better the wear resistance among the edge radii tested. Using 0.5 mm VB as the life criterion, 65 µm radius tools have an average of ~20 min of tool life vs. ~3 min for 5 µm radius tools.

![Graph showing tool wear development](image)

Figure 35. Tool wear development at 1.3 m/s and 0.15 mm/rev.

It is also noted that for the sharp tools (5 µm and 15 µm), the tool life at 1.3 m/s and 0.15 mm/rev is shorter than at 4 m/s and 0.05 mm/rev, which is consistent with observations from previous studies, because the mechanical effect seems to be more dominant to delamination onset. However, for the large hone tools (30 µm and 65 µm), the tool life at 1.3 m/s and 0.15 mm/rev is longer than that at 4 m/s and 0.05 mm/rev, contradictory to the sharp tool cases, implying that the alleviation of deposition stresses by the rounded edge may outweigh the added machining loads due to the enlarged edge radius.
Figure 36. Worn tool SEM images at 4 m/s and 0.05 mm/rev: (a) 5 µm and (b) 65 µm Edge radius, and at 1.3 m/s and 0.15 mm/rev: (c) 5 µm and (d) 65 µm Edge radius.
Figure 36 shows examples of worn tool images (from SEM) of two different edge radii after machining testing. Flank wear-land is the major wear pattern. Moreover, inserts with both large and small edge radii show similar wear features, a large wear-land coating being delaminated with substantial metal deposits for the high feed condition.

The part surface finish produced by different edge-radius tools, at the first cutting pass, is also measured by a stylus profilometer. The results show a similar surface roughness range between different edge radii averaging: 0.85 µm and 0.99 µm of Ra for 5 µm and 65 µm tools at 4 mm/rev. Ra is 1.39 µm vs. 1.16 µm, on average, for the 5 µm and 65 µm tools, respectively.

Summary

In this chapter, WC-Co cutting inserts are used to investigate the edge radius effects on cutting forces and tool wear. Commercial WC-Co inserts are prepared with different edge radii. The inserts are diamond-coated, under identical conditions, with a thickness of 5 to 8 µm. The coated tools with different substrate edge radii are further tested in the machining of composite bars. Two different cutting conditions: (4 m/s and 0.05 mm/rev) and (1.3 m/s and 0.15 mm/rev) are tested. The machining forces are monitored and analyzed against the edge radius, and tool flank-wear is measured and evaluated. Wear features are examined by SEM.

The findings can be summarized as follows. (1) Increasing the edge radius will increase cutting forces, mainly the radial and axial components; moreover, the increasing rate decreases at a higher feed. (2) The combined effects above result in the complex wear behavior of diamond-coated tools with different edge radii. In particular, at the 1.3 m/s and 0.15 mm/rev condition, a 65 µm hone results in a tool life over 5 times longer than 5 µm sharp tools, though tools of either radii have similar tool wear results at the 4 m/s and 0.05 mm/rev condition. The effects of more geometry characteristics, combined with various cutting conditions, on the machining
performance of CVD diamond-coated tools need to be investigated so that a better understanding of tool geometry effects, and machining condition influences can be achieved for suitable tool specification and corresponding cutting parameters in industry application.
Chemical vapor deposition (CVD) diamond-coated tools have been used as a result of reduced fabrication costs, in spite of its shorter tool life. In the literature, experiments regarding CVD diamond-coated tool performance have confirmed that coating delamination is the major failure mode of CVD diamond-coated tools (Chou & Liu, 2005). In machining, residual stress from the deposition process due to thermal expansion (Renaud et al., 2008) in the coupled materials and mechanical and thermal loads from service have a significant effect on tool life.

Interface adhesion is an essential issue in coating delamination, as has been demonstrated from theoretical and experimental angles. Griffith’s (1920, 1924) theory of brittle fracture provides the fundamentals of fracture mechanics. His ideas are not limited to brittle fracture, and Irwin (1957, 1964) succeeds his work and applies it to ductile materials. Fracture toughness is critical to understand energy dissipation mechanisms in the process zone, which characterizes the onset of fracture during the fracture process. Generally, two types of mechanisms are developed (Brocks, 2005). One is the emission and motion of dislocations from the crack tip (Rice, 1992; Rice & Thomson, 1974; Rice & Tracy, 1969; Thomason, 1985; Tvergaard, 1982), a mechanism involving the formation, growth, and coalescence of voids. To address the interface fracture, the crack problem, a cohesive zone model is introduced ahead of the crack tip to simulate material degradation and separation. Barenblatt (1962) and Dugdale (1960) first formulate and apply the concept of cohesive zone models (CZM) with the traction-separation law (Figure 37) to interpret...
interface decohesion involving crack initiation, growth, and coalescence. In their model, the interface traction first increases with separation until it reaches a maximum value; then it falls due to interface weakening and eventually decreases to zero. Xu and Needleman (1994) present a cohesive zone model for simulating dynamic crack growth. Their results agree with a wide range of experiments on fast crack growth in brittle solids. Later, Nakamura and Wang (2001) apply a cohesive zone model to simulate crack propagation in porous materials. The observed numerical errors from the cohesive elements increasing with model compliance need to be minimized by carefully choosing the parameters for the cohesive model. Gao and Bower (2004) make some improvement in avoiding convergence problem in finite element simulations of crack nucleation and growth on cohesive interfaces. They solve the convergence problem in quasi-static finite element computations by introducing a small viscosity in the constitutive equations for the cohesive interfaces. Repetto, Radovitzky, and Ortiz (2000) apply a tension-shear cohesive law model to simulate dynamic fracture and fragmentation of glass rods. They demonstrate that cohesive law, unlike damage theories, introduces well-defined fracture energy with spurious mesh-dependencies, such that the cohesive models endow materials with a characteristic length. Xia et al. (2007) apply the cohesive zone model, including the factor stability found by Gao and Bower, to simulate coating delamination under contact loading. They establish delamination mechanism maps for a strong elastic coating on an elastic-plastic substrate subjected to contact loading.
Coating failure, as well as interface fracture, exhibits complicated behavior and is difficult to measure accurately. Interface adhesion strength can be affected by many coupled and uncoupled factors, such as material properties, deposition condition, surface roughness, etc. Mallika and Komanduri (1999) test diamond coatings on cemented tungsten carbide tools by low-pressure microwave CVD with various surface pretreatment techniques (removal of surface cobalt with aqua regia, the Murakami treatment, and the Murakami followed by ultrasonic microscratching with fine diamond suspension). Their results show significant improvement in the adhesion of diamond coatings on various cobalt content WC tools obtained by appropriate surface treatment and processing conditions. Almeida et al. (2011) also investigate pretreatment to improve adhesion performance and reduce interface effect. The interface toughness was improved from 1.4 kgf/µm to 1.6 kgf/µm after decreasing the Co content of the substrate surface with the etching method for the highest Co content grade (5.75 wt. % Co). Measuring interface toughness is not entirely quantitatively accurate, due to the complexity of the measurement process. Indentation and scratch tests are two widely used methods of investigating interface
adhesion strength. However, a wide range of factors may deteriorate the approximation of measured strength with the real condition. Coating failure mode such as spalling, buckling, and cracking complicates the measurement. Bull and Rickerby (1988, 1990) conclude that the coating failure mechanisms investigated by indentation and scratch testing are similar over a broad range. The indentation-induced interfacial shear stresses favor delamination and may contribute to coating failure in scratch testing. Later, they suggest using interface toughness value rather than critical load to characterize the adhesion of a particular coating, since there is no reliable relationship between the critical load and the physical measure of coating adhesion; and interface toughness enables factors such as the variation in the critical load with internal stress to be eliminated. Volinsky, Moody, and Gerberich (2002) summarize some measurement methods for interfacial adhesion of thin films on substrate and also briefly address some theoretical models specific to the resistance side (the items of resistance to crack propagation) of the delamination equation. In the physical process, the thin film and/or the substrate usually have plastic deformation such that it is difficult to separate the true adhesive energy from the total energy measured. With the development of depth sensing indentation and scratch systems with a high resolution of relevant measuring factors, the possibility of making more accurate measurements of interfacial fracture energy for thin coatings is increasing. However, it demands more investigation for any new indentation and scratch system since a large amount of development and validation work is required considering a lot of factors such as the development of good constitutive equations for coating and substrate, the incorporation of a suitable fracture model and a mechanism to handle interfacial and surface roughness, the incorporation of residual stresses into the model, etc. (Bull & Berasetegui, 2006).
Due to difficulty in measuring interfacial fracture energy, the finite element method may be an alternative means to investigating coating detachment or interfacial failure. In this paper, a 2D cutting simulation with a cohesive zone model is developed, with residual deposition stress included, to investigate the possible effect from tool edge radius and uncut chip thickness. Besides, interface fracture energy effect and deposition temperature effect on cohesive failure after deposition process are also investigated. The cohesive zone model is defined as follows. For $\delta_n > 0$:

\[
T_n = \begin{cases}
\sigma_{\text{max}} \frac{\delta_n}{\delta_{\text{max}}} & (\delta \leq \delta_{\text{max}}) \\
\sigma_{\text{max}} \frac{1 - \delta}{1 - \delta_{\text{max}}} \delta_n & (\delta \geq \delta_{\text{max}})
\end{cases}
\]

(1)

\[
T_t = \begin{cases}
\sigma_{\text{max}} \frac{\Delta^c_{\text{t}} \delta_t}{\delta_{\text{max}} \Delta^c_{\text{t}}} & (\delta \leq \delta_{\text{max}}) \\
\sigma_{\text{max}} \frac{1 - \delta}{1 - \delta_{\text{max}}} \frac{\Delta^c_{\text{n}}}{\Delta^c_{\text{t}}} \delta_n & (\delta > \delta_{\text{max}})
\end{cases}
\]

(2)

For $\delta_n = 0$:

\[
T_t = \begin{cases}
\sigma_{\text{max}} \frac{\Delta^c_{\text{n}} \delta_t}{\delta_{\text{max}} \Delta^c_{\text{t}}} & (\delta \leq \delta_{\text{max}}) \\
\sigma_{\text{max}} \frac{1 - \delta}{1 - \delta_{\text{max}}} \frac{\Delta^c_{\text{n}}}{\Delta^c_{\text{t}}} \delta_n & (\delta > \delta_{\text{max}})
\end{cases}
\]

(3)

where σ_{max} equals interface normal strength, τ_{max} equals interface tangential strength, and δ_{max} is interface characteristic length parameter. Δ^c_{n} and Δ^c_{t} are the critical normal and tangential separations at which complete separation is assumed; and δ_n, δ_t and δ represent the non-dimensional normal, tangential and total displacement jumps respectively, defined by the following equations.

\[
\delta_t = \frac{\Delta^c_{\text{t}}}{\Delta^c_{\text{t}}} \delta_n = \frac{\Delta^c_{\text{n}}}{\Delta^c_{\text{t}}} \delta = \sqrt{\delta^2_{\text{t}} + \delta^2_{\text{n}}}
\]

(4)
Pure opening is corresponding to $\Delta_t=0$ and pure shear separation is represented by $\Delta_n=0$. The normal (ϕ_n) and tangential (ϕ_t) works of separation per unit area of interface are defined by (Chandra et al, 2002)

$$\phi_n = \frac{\sigma_{\text{max}} \Delta_c}{2}, \phi_n = \frac{\tau_{\text{max}} \Delta_c}{2}$$

This bilinear cohesive constitutive model can be plotted in Figure 38.

Figure 38. The cohesive zone model for normal traction and shear traction for two separate modes (Geubelle & Baylor, 1998).
The general procedure for creating a cutting simulation is similar to that described in the previous model. First, deposition stress is simulated with a cohesive zone included. Then, the residual deposition stress and strain are conveyed through the cutting simulation. However, it is noted that the cohesive zone cannot be constructed in a CAE model due to rounding issues in some large curvature areas. An alternative method is chosen to implement the same function and is detailed in the next section. Once the simulation is established, the extracted stress and strain data on the cohesive interface are collected to investigate the possible effects from tool edge radius and uncut chip thickness on cohesive failure. Typical stress-strain relations, represented by the traction-separation curve, are also plotted to gain insight into the cohesive zone’s and edge radius’s effect on cohesive failure. The following flowchart summarizes the above sequence of the simulations with cohesive zone and deposition residual stress included in a diamond-coated tool.
Figure 39. Flowchart of the simulations with cohesive zone residual stress included in a diamond-coated tool.

Deposition Stress Analysis

Model and Simulation

Diamond-coated cutting tools are modeled in ABAQUS/CAE version 6.10, according to the same method used in the previous simulation. Two edge radii, 15 or 50 µm, are employed here.
Due to the complex geometry involved, the CAE method and code method are employed together to realize the cohesive elements included in this two-stage simulation. To start, the CAD model of the tool (substrate and coating) is constructed and translated into an Abaqus input file.

Instead of merging cohesive element nodes in the Abaqus CAE, cohesive elements are written into the Abaqus code. This is to prevent node numbering problems due to the issue described above. Tie constraints are applied to all components of the tool for thermal stress simulations. The elements used for the structural analysis are four-node bilinear displacement and temperature quadrilateral elements (CPE4RT). The cohesive element type is a linear quadrilateral COH2D4. A total of 120 elements are assigned to cohesive zone. Fine mesh (1 µm element size) is assigned to the cohesive elements and solid elements on the coating and substrate at the rounding area. In total, there are 1046 elements on the tool.

The cohesive zone property parameters employed in this investigation are listed in the following table.

Table 3

The Cohesive Zone Parameters for the Diamond-Coated WC Tool

<table>
<thead>
<tr>
<th>Material #</th>
<th>E/GPa</th>
<th>G1/GPa</th>
<th>σ_{max}/MPa</th>
<th>τ_{max}/MPa</th>
<th>Fracture energy (J/m²)</th>
<th>Deposition temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.0</td>
<td>5.0</td>
<td>500</td>
<td>100000</td>
<td>100</td>
<td>800</td>
</tr>
<tr>
<td>2</td>
<td>4.0</td>
<td>4.0</td>
<td>400</td>
<td>100000</td>
<td>80</td>
<td>800</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
<td>5.0</td>
<td>500</td>
<td>100000</td>
<td>100</td>
<td>600</td>
</tr>
</tbody>
</table>

In the above list, the material parameter interfacial tangential strength is selected with a large value in order to ignore the shear failure (Gao, personal communication, Sept, 2011).

Material parameters #3 is different from the above with the purpose of investigation of deposition temperature effect on cohesive failure after the deposition process. The stress-strain relation can be expressed by the traction-separation curve shown in Figure 38(a). The stress-
strain relation under the shear failure mode can be expressed with a similar curve plotted in Figure 38(b) (Geubelle & Baylor, 1998).

All deposition stress simulations are further conducted removing tie constraints between the coating and substrate to examine whether the cohesive zones undergo element failure after the deposition process.

During the deposition stress simulation, an explicit dynamic analysis, with consideration of thermal strains, is constructed. The initial deposition temperature is uniformly 800°C, and the final temperature of 20°C is selected here. The linear-elastic material model is used for the diamond coating, independent of temperatures, while an elastic-plastic material property is assigned to the WC substrate. The elastic property parameters can be found in the work of Qin and Chou (2010). The isotropic material property of WC’s constitutive relation is listed in the following table (Dias et al., 2006), where σ_0 is strength coefficient, n is strain hardening exponent, and σ_y is the yield strength.

Table 4

<table>
<thead>
<tr>
<th>E (GPa)</th>
<th>ν</th>
<th>σ_0 (MPa)</th>
<th>n</th>
<th>σ_y (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>620</td>
<td>0.24</td>
<td>18036</td>
<td>0.244</td>
<td>5.76</td>
</tr>
</tbody>
</table>

Figure 40 shows the stress contours (σ_y component, parallel to the rake) in a diamond-coated tool with a 15 µm edge radius and cohesive fracture energy of 80 J/m2. It can be observed that compressive stress is distributed on the coating and tensile stress on the substrate. Around the tool tip, the stress concentration shows a large gradient, which is consistent with previous simulations.
Figure 40. Deposition stress contour, normal stress parallel to rake face (15 µm edge radius).

Figure 41 demonstrates the typical normal stress in a cohesive zone after deposition stress analysis. Deposition stresses in the coating and substrate cause cohesive zone failure, where two elements fail at the rounded area of the interface.
After finishing the deposition process, the results are imported into the cutting simulation. A workpiece for AA356-T6 is assembled with the diamond-coated cutting tool from the deposition residual stress simulation. The material properties of the workpiece are listed in a previous work by Qin and Chou (2010). The element type for the workpiece is CPE4RT, which considers the thermal and mechanical behavior of stress and strain, independent of temperature.

To conduct the cutting simulation, the ALE method is employed to simulate a steady-state cutting process. The details of the implementation, including the adaptive mesh region, constraints, and the Eulerian and Lagrangian surfaces can be found in Qin and Chou (2010). Here, the tie constraints are only applied to coating-cohesive elements and the cohesive elements-substrate. To implement this method, the CAE model of the cutting simulation is translated into an Abaqus input file (See Appendix for details); then relevant surfaces, element sets, node sets, and constraints for the interactions are created. The friction model and contact interactions can also be found in Qin and Chou’s (2010) work. Since the cohesive element model
in Abaqus cannot consider heat transfer, a gap conductance model for heat transfer across the cohesive zone is constructed. A large gap conductance model is employed here to make the heat transfer across the gap. For the boundary conditions, the tool top, including coating nodes, cohesive nodes, and substrate nodes on the top edge, is constrained along the Y direction, and the right edge of the tool, composed of coating nodes, cohesive nodes, and substrate nodes, is constrained along the X direction. The boundary conditions of workpiece are set as before. The initial temperature of the workpiece is 20°C. A predefined initial state of stress and strain from the deposition process is required for the coating, cohesive elements, and substrate of the diamond-coated tool. Once the above considerations are implemented, the cutting process, including cohesive elements, is simulated. One typical illustration of the workpiece and diamond-coated tool assembly, including cohesive elements, is shown in Figure 42.

![Figure 42. Workpiece and diamond-coated tool assembly, including cohesive elements.](image)

During this research, the tool has a 50 µm edge radius (r_e) and a 15 µm coating thickness, and cutting condition are tested at 5.0 m/s (v) and two uncut chip thickness, 0.05 and 0.45 mm (h), with a cohesive fracture energy of 100 J/m². The interfacial tensile strength, σ_{max}, of 500
MPa, is chosen to conduct a low-temperature (600°C) deposition process. Further cutting simulations and workpiece withdrawal simulations demonstrate that cohesive delamination can happen during cutting and further workpiece withdrawal at certain large uncut chip thickness condition. The elements number and properties of the tool are the same as in the deposition residual stress analysis.

Results and Discussion

Deposition Stress Simulation

The tool specification edge radius = 15 µm, coating thickness = 15 µm (re15t15) is chosen to conduct the deposition stress simulations incorporating a cohesive zone model. The following sections illustrate the cohesive zone results from three angles.

Fracture Energy Effect

Figure 43 demonstrates the results of an interface normal strength of 500 MPa at two different fracture energies for the cohesive zone, 100 J and 80 J. It is observed that the lower cohesive fracture energy case of 80 J presents cohesive element failure after deposition, while the 100 J case maintains the cohesive element without any failure at the same interface normal strength.
Figure 43. σ_n results of cohesive zone at two different fracture energy values after deposition at the interface strength of 500 MPa.
Interface Normal Strength Comparison

100 J is chosen for the comparison of different interface normal strengths. Here, the cohesive zone parameters are selected as follows: two interface normal strength values, 500 MPa and 400 MPa, are employed. The interface shear strength is the same, 100 GPa, which is chosen to eliminate the shear strength influence.

The results are shown in Figure 44. Cohesive element failure occurs with the lower interface normal strength. This demonstrates that the cohesive zone with a lower interface normal strength tends to be susceptible to interface delamination.

![Figure 44. σn responses for different interface normal strength, 500MPa and 400 MPa at the same fracture energy 100 J/m² and interface shear strength 100 GPa.](image)

Deposition Temperature Effect

Deposition Simulation Results

A low deposition temperature tends to reduce deposition residual stress in diamond-coated tools. This effect will decrease the possibility of cohesive failure after deposition. To observe an aggressive uncut chip thickness effect, a tool model that maintains a good cohesive zone after the deposition process must be realized. In the investigation, the cohesive zone property implemented is corresponding to #3 shown in Table 3. Deposition temperature is 600
94˚C. The tested diamond-coated tool is with 50 µm edge radius (r_e) and coating thickness 15 µm (t).

Figure 45 demonstrates no cohesive failure after deposition.

Cutting Simulation

To conduct the uncut chip thickness effect on cohesive interface failure the deposition residual stress of the tool is inherited in the following cutting simulation with two uncut chip thickness values, 0.45 mm and 0.05 mm, were tested and the same cutting speed was 5 m/s. Large uncut chip thickness, 0.45 mm, is chosen to conduct the cutting simulation and workpiece withdrawal to investigate whether cohesive delamination happens. The following series of figures display the progressive cohesive condition during the cutting simulation process.

Figure 46 presents the initial state of the cutting simulation. There is no cohesive failure evident at the beginning of the cutting simulation.
Figure 46. Initial state of the workpiece, tool, and cohesive zone.

Figure 47 illustrates the status at the last time increment before cohesive delamination during cutting.

Figure 47. No cohesive failure at cutting step time 0.00158 seconds.

Figure 48 demonstrates that cohesive failure initiation happens at the simulation step time 1.60 microseconds. At this time, cohesive element failures happen at elements number 83 to 85,
located at the flank face of the tool near the round edge. The failure length is approximately 16 µm.

Figure 48. Cutting and initial cohesive failure at step time 0.00160 seconds.

Figure 49 shows traction-separation curves for two cohesive nodes, which belong to failed and unfailed cohesive elements respectively. Node 224 is located at unfailed cohesive element at the
flank face while node 145 belongs to the failed cohesive element number 84, between unfailed element 82 and 86, shown in Figure 48.

Figure 49. Traction-separation curve for nodes 224 and 145 located at unfailed and failed cohesive elements respectively.

Figure 50 is the final state of cohesive failure in the cutting simulation. A total of four elements fail after the cutting simulation.
Figure 50. Cohesive failure final state in the cutting simulation.

Figure 51 is the final state of chip formation in the cutting simulation reaching its steady state. Figure 52 is the final state of the top-right chip zoom-in image, which shows the steady state when the curly chip forms and the chip-tool contact length stays roughly constant.
Figure 51. Final state of chip formation in the cutting simulation.
Figure 52. Final state (zoom-in of top-right chip) of chip formation in the cutting simulation.

Workpiece withdrawal shows further cohesive delamination, since the contact between the tool and the chip is removed progressively. Figure 53 demonstrates further cohesive element failures after workpiece withdrawal. At this simulated time, a total of 18 elements fail. The cohesive failure extends further to the flank face and the rounded area.
Figure 53. Cohesive failure at workpiece withdrawal simulation step time 0.000011 seconds.

Figure 54 shows the final state of the cohesive zone after the workpiece withdrawal process. A total of 18 elements without further failure exist in the workpiece withdrawal simulation.
Figure 54. Final state of the cohesive zone after the workpiece withdrawal.

Figure 55 displays the final state of the workpiece and the tool in the workpiece withdrawal simulation. The workpiece is completely separated from the tool. It is evidently observed that no chip change happens in the workpiece retreatment.
The following case is one example without cohesive zone failure during cutting simulation and after workpiece withdrawal process. In this case, the cutting speed is the same while the uncut chip thickness is different, which is 0.05 mm, a gentle condition, compared to the previous one.

Figure 45 (page 93) demonstrates no cohesive failure after the deposition process. Figure 56 shows the initial state of the workpiece, tool, and cohesive zone. No cohesive failure is observed at the beginning of the cutting simulation.
Figure 56. Initial state of the workpiece, tool, and cohesive zone in cutting parameter v5h0.05.

Figure 57 shows no cohesive failure at the end of the cutting simulation. The cutting process has reached steady state shown in Figure 56 (c) according to the chip shape.

(a) workpiece and tool
Figure 57. Final state of workpiece, tool, and cohesive zone in the cutting simulation.

Figure 58 displays the final state of the workpiece, tool, and cohesive zone in the workpiece withdrawal simulation.
Figure 58. Final state of workpiece, tool, and cohesive zone in the workpiece withdrawal simulation.
The above deposition stress simulation, cutting simulation, and workpiece withdrawal simulation demonstrate that no cohesive delamination happens in all of the three stages for the diamond-coated tool with deposition at 600°C, a cohesive parameter (σ_{max}) of 500 MPa, and cutting conditions of a speed of 5.0 m/s, and an uncut chip thickness of 0.05 mm.

Summary

Coated tool failure is complicated due to different failure mechanisms existing (e.g. coating fracture & delamination) and possibly interacting with each other and complexed by the tool geometry effect, and residual deposition stress, etc. In this study, a cohesive zone model is first included in 2D cutting simulations using the finite element method. The different cohesive fracture energy values are employed in the cutting simulations to investigate the energy effect on cohesive zone failure. Two different interface normal strengths are also tested. Last but not least, an example of progressive cohesive failure test in cutting and workpiece withdrawal simulations is realized with conditions of low deposition residual stress and large uncut chip thickness.

The major findings can be summarized as follows: (1) Residual deposition stress has a significant effect on cohesive failure. With deposition residual stress, the cohesive zone is more susceptible to element failure. (2) Large cohesive fracture energy tends to noticeably reduce the chances of cohesive failure. (3) The feasibility of cohesive interface failure for diamond-coated tools including deposition residual stress in cutting simulation has been demonstrated. (4) The developed model has been utilized to investigate cutting parameter uncut chip thickness effect in cutting simulation. The results show that large uncut chip thickness tends to cause cohesive interface failure.
CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

Conclusions

Increasing use of high-strength Al alloys and composites in the automotive and aerospace industries for functional parts has created machining difficulties for the tooling industry. Conventional cutting tools made of plain or coated cemented carbides cannot withstand the rapid abrasive wear produced by the hard reinforcements embedded in those materials. Diamond is considered by far the best tooling material for machining these high-strength materials. Sintered polycrystalline diamond (PCD) and CVD diamond coatings are two competitive options, and CVD diamond-coated tools have attracted more interest due to their low cost and flexibility in fabrication. However, coating-substrate interface delaminations remain a major technical barrier, and the complex effects of tool geometry and deposition residual stress, as well the effect of machining conditions on tool performance, have been hindering industrial application of CVD diamond-coated tools. The goal of this research is to improve the understanding of the effects of tool geometry and deposition residual stress as well the machining conditions on CVD diamond-coated tool performance in machining high-strength Al-based materials. Experimental and numerical approaches are utilized to achieve this objective. The major findings are summarized as follows.

1. Certain diamond-coated tools with different substrate edge radii have been tested in machining composite bars under two different cutting conditions: (4 m/s and 0.05 mm/rev; 1.3 m/s and 0.15 mm/rev). Machining forces were monitored and analyzed against the different edge
radii. Tool flank-wear was measured and evaluated, and wear features were examined by SEM. The results show that increasing the edge radius will increase cutting forces, mainly the radial and axial components; moreover, the increasing rate decreases at a higher feed. The combined effects above result in complex wear behavior of diamond-coated tools with different edge radii. In particular, at the 1.3 m/s and 0.15 mm/rev condition, a 65 µm hone presents a tool life over 5 times longer than 5 µm sharp tools, though tools of either radii have similar tool wear results at the 4 m/s and 0.05 mm/rev condition.

2. A 2D couple thermo-mechanical finite element model of orthogonal cutting has been established. The stress and temperature fields of the diamond-coated tool, with and without deposition residual stress, are compared. The result shows the deposition residual stress remains largely inside the tool. The developed finite element orthogonal cutting model has been applied to investigate the tool stress evolution from deposition to machining, with two different edge radii, under two sets of cutting conditions. The simulations indicate that deposition residual stresses can remain dominant in gentle cutting, e.g., smaller uncut chip thicknesses. At a smaller uncut chip thickness, the stress level is marginally reduced by the contact stress from the chip. The maximum \(\sigma_r \) is in a close range between the different edge radii. However, at a larger uncut chip thickness, the radial normal stresses change noticeably due to machining, especially high tensile stresses close to the end of edge rounding (transition to flank surface). It is noted that the maximum \(\sigma_r \) is greater at the 5 µm edge, at 1.2 GPa versus 0.9 GPa at the 50 µm edge.

3. Cutting experiments have been conducted to validate the simulation model. Experiments conducted by researchers in NIST measure the cutting force and thrust force for the following condition: 25 µm edge radius, 20 µm coating thickness, 5 m/s cutting speed, and 0.15 mm uncut chip thickness at 128 N and 73 N per mm width of cut. This is comparable to the
simulation results of 162 N and 72 N of the cutting and thrust components for 1 mm uncut width. Cutting temperature is also compared. The maximum tool temperature is 330°C, versus 275°C from the experiment. Since the cutting simulation was 2D, it did not take heat transfer along the in-plane direction into consideration, which deviates from the actual cutting, with heat loss parallel to the cutting edge direction. Hence, the higher simulated cutting tool temperature may be due to such a departure.

4. A cohesive zone model has been incorporated at the interface of the diamond coating and the substrate. Finite element models of residual deposition stress simulations and cutting simulations have been developed to investigate the interface behavior during cutting simulations under various machining conditions.

Contributions of the Study

The contributions of this study are summarized below.

1. This study correlates deposition residual stresses, cutting conditions, and tool geometry parameters with diamond-coated tool performance.

2. A 2D finite element model of diamond-coated tool cutting simulation, including residual deposition stress, was established for evaluating tool performance for different tool geometry parameters, deposition residual stress conditions, and machining parameters.

3. A cohesive zone model has been incorporated into 2D cutting simulations. Using this method, the effects of interface properties, and machining and tool parameters on coating delaminations can be evaluated during cutting, where thermal load and mechanical load can be combined together.
Recommendations for Future Research

This study provides a better understanding of the effect of diamond-coated tool geometry as well cutting conditions on tool performance in machining Al-Si alloys and Al-matrix composites. Furthermore, the finite element model of cutting simulation, incorporating the cohesive zone model, provides better understanding of the wear and failure mechanisms of CVD diamond-coated cutting tools in machining. Future research can be pursued in the following directions:

1. The developed finite element model of cutting simulation is based on a 2D model, which may limit understanding of the actual machining operation. Therefore, developing a 3D finite element model of cutting simulation may bring research results much closer to the real conditions.

2. The advantage of CVD diamond-coated tools over PCD tools is fabrication flexibility, especially in tools with complex geometry. The above research should be extended to more general 3D conditions and more complex geometries, such as drills, milling cutters, etc.

3. The 2D cutting simulation employs a constitutive model for one workpiece material. To investigate tool performance in cutting simulation with other workpiece materials, more experimental and analytical tests may be required to acquire more related constitutive parameters.

4. In the cutting simulation model, the diamond coating is assumed to be elastic and of no plastic behavior. No abrasive or material loss in the coating is accounted for in the simulation, which is not in agreement with regular machining operations and conditions. Therefore, an advanced constitutive model of diamond-coated tools with coating wear rate or a coating fracture
model might be introduced so as to investigate the effects of the cutting conditions, tool geometry effect, and interface bonding conditions on diamond-coated tool performance.
REFERENCES

APPENDIX A

PROCEDURE OF IMPLEMENTING CZM AT DIAMOND-COATED INSERT INTERFACE

Part I: Deposition process simulation

1. Construct geometry models of coating and substrate in CAE

![Figure A1. Substrate model (left) and coating model (right).](image)

2. Create materials properties for coating and substrate

3. Create sections and assign them to coating and substrate

4. Assembly coating and substrate (here I choose option-mesh on part)

5. Partition coating and substrate for mesh preparation

 Figure A2 shows the operation example for coating, which also applies to substrate.

 Figure A3 displays the final state of tool after partition operation.
6. Create element sets for internal surface of coating (Figure A4) and outer surface of substrate (Figure A5)
Figure A5. Create element set for substrate outer surface.

7. Create surfaces for coating (Figure A6) and substrate (Figure A7) for the purpose of later interaction definitions.

Figure A6. Create element-based surface for coating (choose geometry option).
Figure A7. Create element-based surface for substrate (choose geometry option).

8. Create deposition step time=0.001s (dynamic explicit mode), and turn nlgeom on.

9. Define field output variables as follows:

 CSTRESS,DAMAGEC,DAMAGEFC,DAMAGEFT,DAMAGEMT,DAMAGESHR,DA
 MAGE,T,DMICRT,E,HFL,LE,MISSESMAX,NT,PE,PEEQ,RF,RT,S,SDEG,STATUS,TE
 MP,U,
10. Define penalty interaction for coating surface and substrate surface, which have been defined in the preceding: coating surface as the master surface and substrate surface as the slave surface

11. Define tie constraint for coating and substrate: coating surface as Master surface and substrate surface as Slave surface

12. Define deposition temperature field for tool: initial temperature field is 600 °C

13. Define boundary conditions: constrain tool right edge in x direction and tool top edge in y direction (shown in Figure A9 and A10), and define final tool temperature 20 °C (shown in Figure A11)
Figure A9. X-contraint boundary condition definition.

Figure A10. Y-contraint boundary condition definition.
14. Meshing. Apply Element type-CPE4RT on both coating and substrate. Free mesh for substrate and sweep mesh for coating so as to point to the stack direction to coating thickness outward.

Substrate edge seeds are assigned as following: top edge - 8 elements with bias ratio of 3; right edge - 12 elements with bias ratio of 3; flank edge (long segment) - 25 elements with bias ratio of 5; flank edge (short segment connected to arc) - 10 elements; arc - 15 elements; rake edge (short segment connected to arc) - 10 elements; rake edge (long segment) - 60 elements with bias ratio of 5.

Coating edge seeds are similar to substrate except the thickness direction, where 3 elements are assigned.

15. Define restart simulation requirement for later cutting simulation.
16. Save the nodes and elements information for later use in cohesive zone editing process.

The interface of coating side is chosen for ease later cohesive zone editing, where cohesive nodes share the same node coordinates with the connecting nodes on coating. For example, partial coating interface node and element numbers are shown in Figure 12. Element 205 is composed of node 157, 7, 393, and 392. In constructing cohesive element, the same direction should rule there.

17. Generate abaqus input file for later use in next step.

Figure A12. Coating interface node and element numbering.

18. Add cohesive nodes, elements and sections in abaqus.
Cohesive nodes share the same coordinates with the nodes on coating interface. For convenience, here, one group of cohesive node numbers is same as those on coating interface. Then the node number information was copied and pasted beneath and with node numbering augment 1000 so as to construct all required cohesive nodes. Figure 13 gives an example of cohesive nodes (element) and coating nodes (element) configuration. Cohesive element 1 is composed of cohesive node 2, 2002, 71, and 1071. Cohesive nodes 2 and 1002 share same coordinate with coating interface node 2. Cohesive nodes 71 and 1071 share same coordinate with coating interface node 71.

The following code shows an example of how to implement cohesive nodes, elements, and sections in an input file.

```plaintext
** PARTS
**
*Part, name=COAT
*Node
  1,    0., 0.0915198326
```
...
13, 0., 0.104273289
14, 0., 0.117379434
...
134, -0.00499999989, 0.0915198326
...
251, -0.00499999989, 0.104273289
252, -0.00499999989, 0.117379434
...
*Element, type=CPE4RT
 1, 1, 13, 251, 134
 2, 13, 14, 252, 251
...
360, 484, 199, 10, 225
*Nset, nset=_PICKEDSET22, internal, generate
 1, 484, 1
*Elset, elset=_PICKEDSET22, internal, generate
 1, 360, 1
** Section: Section-1-_PICKEDSET22
*Solid Section, elset=_PICKEDSET22, material=COAT
,
*End Part

**Create cohesive zone part with the name of INTERLAY-1

**Share the same node coordinates corresponding to nodes on coating interface

**
*Part, name=INTERLAY-1
*Node
 1, 0., 0.0915198326
 2, 0., 2.
5, 0.0898383558, 0.0174628068
6, 0.0595404506, 0.0115734907
7, 0., 0.0606548488
11, 1., 0.194380313
13, 0., 0.104273289
14, 0., 0.117379434
...
70, 0., 1.87418139
71, 0., 1.93623269
...
224, 0.104361326, 0.0202857871
1001, 0., 0.0915198326
1002, 0., 2.
...
1201, 0.927385151, 0.180265412
...
1224, 0.104361326, 0.0202857871

** Create cohesive elements
*Element, type=COH2D4
 1, 71, 2, 1002, 1071
 2, 70, 71, 1071, 1070
...
120, 11, 201, 1201, 1011

** Define cohesive node sets
*Nset, nset=_PICKEDSET2, internal
 1, 2, 5, 6, 7, 11, 13, 14, 15, 16, 17, 18,
 19, 20, 21, 22
 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
 35, 36, 37, 38
** Define cohesive element sets for cohesive section definition

*Elset, elset=_PICKEDSET2, internal, generate
 1, 120, 1

** Section: Section-2-_PICKEDSET2
*Cohesive Section, elset=_PICKEDSET2, material=COHESIVE, response=TRACTION
SEPARATION
,
...

19. Add cohesive instance in assembly portion

** ASSEMBLY

**
*Assembly, name=Assembly

**
*Instance, name=COAT-1, part=COAT
*End Instance

**
*Instance, name=INTERLAY-1, part=INTERLAY-1
*End Instance

**
*Instance, name=SUB-1, part=SUB
*End Instance

**

20. Create cohesive surface for later interaction and constraints definitions

*Elset, elset=_SURFMINIDIN_S1, internal, instance=INTERLAY-1, generate
 1, 120, 1
*Elset, elset=_SURFMINIDOUT_S3, internal, instance=INTERLAY-1, generate
 1, 120, 1
*Elset, elset=cohesive, internal, instance=INTERLAY-1, generate
 1, 120, 1
21. Define tie constraints for all three contact pairs between coating surface, substrate surface, and cohesive zone surface

** Constraint: TIE1
*Tie, name=TIE1, adjust=yes
cohesiveout, SURF-COATIN

** Constraint: TIE2
*Tie, name=TIE2, adjust=yes
SURF-SUBOUT, cohesivein

** Constraint: TIE3
*Tie, name=TIE3, adjust=yes
SURF-COATIN, SURF-SUBOUT

22. Create cohesive zone material

**
*Material, name=COHESIVE
*Damage Initiation, criterion=MAXS
500., 100000., 0.
*Damage Evolution, type=ENERGY
0.1,
*Density
7.9e-09,
*Elastic, type=TRACTION
5e+06, 5e+06, 0.
23. Check boundary conditions for all three parts (coating, substrate, and cohesive zone) and submit job. In simulations, the job is submitted via command:

C:\Abaqus\abq6101 Job=… int

The above steps are made for deposition process simulation.

Part I: Cutting simulation and workpiece withdrawal simulation

After deposition simulation, the following simulation is cutting process. The major procedure is shown below.

1. Create workpiece part in CAE.

 ![Workpiece geometry for simulation of speed condition 5 m/s and uncut chip thickness 0.45 mm.](image)

 Figure A14. Workpiece geometry for simulation of speed condition 5 m/s and uncut chip thickness 0.45 mm.

2. Create workpiece material and section.

3. Import tool model. Three deformed parts of diamond-coated tool need to be imported one by one. The imported part name needs to delete “-1” from the default name so as to make
the later assembled part name same as in previous deposition result. Besides, the parts need to cite their final state in the previous deposition job.

Figure A15. Assembly of workpiece and tool.

4. Set up the workpiece and the tool together. Here, workpiece instance mesh is dependent on geometry. During the assembly process, it is not allowed to move the tool since this will affect the imported stress state of the tool. The adjustment of Workpiece location is chosen instead to make the tool and workpiece be as close as possible. Figure 15 shows image of the assembly.

5. Create cohesive element set in assembly by select the imported cohesive zone (shown in Figure 16). The purpose is for the preparation of adding cohesive surfaces later in generated input file because the element set defined in the previous deposition simulation cannot be inherited automatically in job transfer operation.
6. Define tool surface, coat internal surface, substrate outer surface, workpiece bottom surface, and possible tool-chip contact surface of workpiece during cutting.

Figure A17. Definition of workpiece bottom surface, and possible tool-chip contact surface of workpiece as highlighted.
Figure A18. Definition of coat internal surface and tool surface as highlighted.
7. Define Eulerian and Lagrangian surfaces for workpiece. First create surfaces with geometry option, and then modify the keywords of those surfaces. Figure A20 shows the created surfaces, where eu1, eu2, and eu3 are defined as Eulerian surfaces, and lag1 and lag2 are defined as Lagrangian surfaces.

Figure A19. Definition of substrate outer surface as highlighted.
Figure A20. Create Eulerian and Lagrangian surfaces in assembly as pointed by the arrows.

Figure A21 shows the modification of the related keywords.

Figure A21. Keywords modifications of Eulerian and Lagrangian surfaces.
8. Create cutting analysis and workpiece withdrawal analysis steps. Both are dynamic, temp-displacement, explicit option. For cutting, the step time is 0.002 seconds, which depends on the cutting conditions. Turn on the nonlinear analysis option. For workpiece withdrawal process, the step time is 0.0001 seconds.

9. Create ALE adaptive mesh constraints. Choose cutting step and create adaptive mesh for workpiece left boundary, right boundary, and the chip top respectively. Figure A22-A24 show the detail of those definitions.

Figure A22. Definition of adaptive mesh constraint for workpiece left boundary as highlighted
10. Create two interaction properties for interactions to be used. Figure A25 shows the definition of interaction-1.
(a) Tangential behavior

(b) Thermal conductance
(c) Heat generation

Figure A25. Define interaction property for chip-tool contact in cutting.

Tangential behavior is of friction coefficient 0.6 with shear stress limit of 143 MPa.

Figure A26 shows the definition of interaction-2, which is used for heat transfer across the cohesive zone.
11. Create two interactions for cutting simulation. One is the interaction between coating internal surface and substrate outer surface, which uses penalty contact method, the other is that between workpiece and tool for chip contact and heat transfer description.
Figure A27. Define surface penalty contact interaction between coating surface and substrate surface to specify the heat transfer interaction property.

Figure A28. Define surface kinematic contact interaction between tool surface and chip (workpiece) surface as highlighted.
12. Define a temporary tie constraint (shown in figure 29) for later modification in input file.

Figure A29. Tie constraint definition for coating and substrate used for later modification in input file.

13. Define displacement load amplitude for workpiece withdrawal process (shown in figure A30).

Figure A30. Definition of a displacement load amplitude.
14. Define boundary conditions for workpiece and tool. Figure A31 shows the tool is constrained in y direction for top edge and x direction for right edge.

Figure A31. Boundary conditions for tool as highlighted.

Figure A32 shows boundary conitions for workpiece. Workpiece bottom is constrained in y direction and a material flows in from workpiece left at a speed of 5.0 m/s. This needs further keywords modification which will be addressed in the sequel.
Figure A32. Boundary conditions for workpiece as highlighted.

Figure A33 shows how to make workpiece withdrawal process. In the definition, workpiece will take a displacement load after cutting process. The displacement cites an amplitude loading history which is defined before in Step 13. Note that the boundary conditions of workpiece will be deactivated in workpiece withdrawal simulation.
Figure A33. definition of workpiece withdrawal as highlighted.

15. Define ALE adaptive mesh.

Go to main menu, then “other” to define ALE adaptive mesh controls and domain. Figure A34 is the definition of ALE adaptive mesh domain. The workpiece geometry is defined as ALE adaptive mesh domain. Figure A35 shows the ALE adaptive mesh controls, which will be employed in ALE adaptive mesh domain definition.
Figure A34. Definition of ALE adaptive mesh domain as highlighted.

Figure A35. Definition ALE adaptive mesh controls.
16. Mesh workpiece. Element type is CPE4RT. Free meshing is chosen for workpiece. The element seeds are defined as follows.

Figure A36. Element seeds of workpiece left edge as highlighted.

Figure A37. Element seeds of workpiece bottom edge as highlighted.
Figure A38. Element seeds of workpiece right edge as highlighted.

Figure A39. Element seeds of workpiece right-top edge as highlighted.
Figure A40. Element seeds of workpiece arc edge as highlighted.

Figure A41. Element seeds of chip right edge as highlighted.
Figure A42. Element seeds of chip top edge as highlighted.

Figure A43. Element seeds of chip right edge as highlighted.
Figure A44. Element seeds of chip left arc edge as highlighted.

Figure A45. Element seeds of workpiece left-top edge as highlighted.
17. Modify keywords for material flow definition.

![Figure A46. Modification of material flow definition as highlighted.](image)

18. Define imported job state for tool parts and initial temperature field for workpiece.
Figure A47. Definition of cohesive zone initial state before cutting.

Figure A48. Definition of substrate initial state before cutting.
Figure A49. Definition of coating initial state before cutting.

Figure A50. Definition of workpiece initial temperature field before cutting.

20. Modify the input file as highlighted.
*Elset, elset=cohesive, instance=INTERLAY-1, generate
 1, 120, 1
*Surface, type=element, name=cohesivein
 cohesive, S1
*Surface, type=element, name=cohesiveout
 cohesive, S3

Figure A51. Definition of cohesive surfaces in input file.

** Constraint: tie1
*Tie, name=tie1, adjust=yes
 cohesiveout, coatin surf
** Constraint: tie2
*Tie, name=tie2, adjust=yes
 cohesivein, substratesurf

Figure A52. Definition of tie constraints in input file.

21. Run the input file using command: C:\abaqusjobs\abq6101 job=... int
APPENDIX B

A TYPICAL INPUT FILE FOR DEPOSITION RESIDUAL STRESS SIMULATION INCLUDING COHESIVE ZONE

*Heading
** Job name: 11012cm0r05r5c15depsi5g50m
Model name: cm0r05r5c15depsi5g50m
** Generated by: ABAQUS/CAE 6.10-1
*Preprint, echo=NO, model=NO, history=NO, contact=NO
**
** PARTS
**
*Part, name=COAT
*Node
1, 0.0, 0.091519826
2, 0.0, 0.2
3, 0.0, 0.091519826
4, 0.0, 0.091519826
5, 0.000000000, 0.21474207
6, 0.000000000, 0.011753950
7, 0.000000000, 0.060645848
8, 0.000000000, 0.000000000
9, 0.000000000, 0.000000000
10, 0.000000000, 0.000000000
11, 0.0, 0.19436013
12, 0.0, 0.19709956
13, 0.0, 0.19436013
14, 0.0, 0.19436013
15, 0.0, 0.19436013
16, 0.0, 0.19436013
17, 0.0, 0.19436013
18, 0.0, 0.19436013
19, 0.0, 0.19436013
20, 0.0, 0.19436013
21, 0.0, 0.19436013
22, 0.0, 0.19436013
23, 0.0, 0.19436013
24, 0.0, 0.19436013
25, 0.0, 0.19436013
26, 0.0, 0.19436013
27, 0.0, 0.19436013
28, 0.0, 0.19436013
29, 0.0, 0.19436013
30, 0.0, 0.19436013
31, 0.0, 0.19436013
32, 0.0, 0.19436013
33, 0.0, 0.19436013
34, 0.0, 0.19436013
35, 0.0, 0.19436013
36, 0.0, 0.19436013
37, 0.0, 0.19436013
38, 0.0, 0.19436013
39, 0.0, 0.19436013
40, 0.0, 0.19436013
41, 0.0, 0.19436013
42, 0.0, 0.19436013
43, 0.0, 0.19436013
44, 0.0, 0.19436013
45, 0.0, 0.19436013
46, 0.0, 0.19436013
47, 0.0, 0.19436013
48, 0.0, 0.19436013
49, 0.0, 0.19436013
50, 0.0, 0.19436013
51, 0.0, 0.19436013
52, 0.0, 0.19436013
53, 0.0, 0.19436013
54, 0.0, 0.19436013
55, 0.0, 1.12068927
56, 0.0, 1.1619035
57, 0.0, 1.20425749
58, 0.0, 1.24778259
59, 0.0, 1.29251146
60, 0.0, 1.33847725
61, 0.0, 1.38571147
62, 0.0, 1.43425739
63, 0.0, 1.48414302
64, 0.0, 1.53540814
65, 0.0, 1.58690102
66, 0.0, 1.64223075
67, 0.0, 1.69756763
68, 0.0, 1.75503427
69, 0.0, 1.81377986
70, 0.0, 1.87418139
71, 0.0, 1.93623269
72, 0.0, 1.93623269
73, 0.0, 1.93623269
74, 0.0, 1.93623269
75, 0.0, 1.93623269
76, 0.0, 1.93623269
77, 0.0, 1.93623269
78, 0.0, 1.93623269
79, 0.0, 1.93623269
80, 0.0, 1.93623269
81, 0.0, 1.93623269
82, 0.0, 1.93623269
83, 0.0, 1.93623269
84, 0.0, 1.93623269
85, 0.0, 1.93623269
86, 0.0, 1.93623269
87, 0.0, 1.93623269
88, 0.0, 1.93623269
89, 0.0, 1.93623269
90, 0.0, 1.93623269
91, 0.0, 1.93623269
92, 0.0, 1.93623269
93, 0.0, 1.93623269
94, 0.0, 1.93623269
95, 0.0, 1.93623269
96, 0.0, 1.93623269
97, 0.0, 1.93623269
98, 0.0, 1.93623269
99, 0.0, 1.93623269
100, 0.0, 1.93623269
101, 0.0, 1.93623269
102, 0.0, 1.93623269
103, 0.0, 1.93623269
104, 0.0, 1.93623269
105, 0.0, 1.93623269
106, 0.0, 1.93623269
107, 0.0, 1.93623269
108, 0.0, 1.93623269
109, 0.0, 1.93623269
110, 0.0, 1.93623269
111, 0.0, 1.93623269
112, 0.0, 1.93623269
113, 0.0, 1.93623269
114, 0.0, 1.93623269
115, 0.0, 1.93623269
116, 0.0, 1.93623269
117, 0.0, 1.93623269
118, 0.0, 1.93623269
119, 0.0, 1.93623269
120, 0.0, 1.93623269
121, 0.0, 1.93623269
122, 0.0, 1.93623269
123, 0.0, 1.93623269
124, 0.0, 1.93623269
125, 0.0, 1.93623269

165
**Instance, name=INTERLAY-1, part=INTERLAY
*End Instance

**
*Elset, elset=_SURF-COATIN_S1, internal, instance=COAT-1
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32
 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48
 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94
 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110
*Elset, elset=_SURF-SUBOUT_S2, internal, instance=SUB-1
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
*End Elset

**
**
*Net, nset=_PICKEDSET18, internal, generate
 1, 1753, 1
*Elset, elset=_PICKEDSET18, internal, generate
 1, 1682, 1
**
*Solid Section, elset=_PICKEDSET18, material=SUBSTRATE
*End Part

**
**
**
*Assembly, name=Assembly

**
*Instance, name=COAT-1, part=COAT
*End Instance

**
*Instance, name=SUB-1, part=SUB
*End Instance
* Name: Disp-SC2 Type: Displacement/Rotation
* Boundary
_PickedSet42, 1, 1
**
** PREDEFINED FIELDS
**
** Name: Field-1 Type: Temperature
*Initial Conditions, type=TEMPERATURE
_PickedSet38, 600.
**
** STEP: depositionstep
**
*Step, name=depositionstep
*Dynamic Temperature-displacement, Explicit, element by element
, 0.001
*Bulk Viscosity
0.06, 1.2
**
** BOUNDARY CONDITIONS
**
** Name: Temp-BC-1 Type: Temperature
*Boundary
**
** INTERACTIONS
**
** Interaction: Int-1
*Contact Pair, interaction=CSUB, mechanical constraint=PENALTY, cpset=Int-1
SURF-COATI, SURF-SUBOUT
**
** OUTPUT REQUESTS
**
*Restart, write, number interval=1, time marks=NO
**
** FIELD OUTPUT: F-Output-1
**
*Output, field, number interval=100
*Node Output
NT, RF, RT, U
*Element Output, directions=YES
DAMAGEC, DAMAGEFC, DAMAGEFT, DAMAGEMC,
DAMAGEMT, DAMAGESHR, DAMAGET, DMICRT, E, LE,
MISSEMIX, PE, PEEQ, S, SDEG, STATUS
*Contact Output
CSTRESS,
**
** HISTORY OUTPUT: H-Output-1
**
*Output, history, variable=PRESELECT,
frequency=1
*End Step
APPENDIX C
CUTTING SIMULATION AND WORKPIECE WITHDRAWAL
SIMULATION INCLUDING COHESIVE ZONE AND
DEPOSITION RESIDUAL STRESS

Title
Job name: re50t15v5b45e1005s500tm600
Model name: re50t15v5b45e100txtacte500tm600
Generated by: Abaqus/CAS 6.10-1
Preprint, echo=NO, model=NO, history=NO, contact=NO

PARTS

**Part, name=WP

*Node

<table>
<thead>
<tr>
<th>Node</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.421485572</td>
<td>-0.573579609</td>
<td>0.196938767</td>
</tr>
<tr>
<td>2</td>
<td>0.402500004</td>
<td>-0.56629163</td>
<td>0.275500008</td>
</tr>
<tr>
<td>3</td>
<td>0.391506253</td>
<td>-0.558304429</td>
<td>0.196938767</td>
</tr>
<tr>
<td>4</td>
<td>0.378706361</td>
<td>-0.542500119</td>
<td>0.275500008</td>
</tr>
<tr>
<td>5</td>
<td>0.371813131</td>
<td>-0.5300861</td>
<td>0.275500008</td>
</tr>
<tr>
<td>6</td>
<td>0.435500002</td>
<td>-0.574999988</td>
<td>0.196938767</td>
</tr>
<tr>
<td>7</td>
<td>0.370000005</td>
<td>-0.50999999</td>
<td>0.196938767</td>
</tr>
<tr>
<td>8</td>
<td>0.370000005</td>
<td>0.13047953</td>
<td>0.196938767</td>
</tr>
<tr>
<td>9</td>
<td>0.970000005</td>
<td>0.774999976</td>
<td>0.196938767</td>
</tr>
<tr>
<td>10</td>
<td>-0.079999982</td>
<td>0.774999976</td>
<td>0.196938767</td>
</tr>
<tr>
<td>11</td>
<td>-0.079999982</td>
<td>0.774999976</td>
<td>0.196938767</td>
</tr>
<tr>
<td>12</td>
<td>-0.001963896</td>
<td>0.117314115</td>
<td>0.196938767</td>
</tr>
<tr>
<td>13</td>
<td>-0.05771909</td>
<td>0.007842712</td>
<td>0.196938767</td>
</tr>
<tr>
<td>14</td>
<td>-0.147412151</td>
<td>0.052771907</td>
<td>0.196938767</td>
</tr>
<tr>
<td>15</td>
<td>-0.0876858905</td>
<td>0.196938767</td>
<td>0.196938767</td>
</tr>
<tr>
<td>16</td>
<td>-0.4799999</td>
<td>-0.125</td>
<td>0.196938767</td>
</tr>
<tr>
<td>17</td>
<td>-0.203723645</td>
<td>-0.125</td>
<td>0.196938767</td>
</tr>
<tr>
<td>18</td>
<td>-0.2824323</td>
<td>-0.125</td>
<td>0.196938767</td>
</tr>
<tr>
<td>19</td>
<td>-0.277999997</td>
<td>-0.125</td>
<td>0.196938767</td>
</tr>
<tr>
<td>20</td>
<td>-0.277999997</td>
<td>-0.125</td>
<td>0.196938767</td>
</tr>
<tr>
<td>21</td>
<td>-0.277999997</td>
<td>-0.125</td>
<td>0.196938767</td>
</tr>
<tr>
<td>22</td>
<td>-0.277999997</td>
<td>-0.125</td>
<td>0.196938767</td>
</tr>
<tr>
<td>23</td>
<td>-0.277999997</td>
<td>-0.125</td>
<td>0.196938767</td>
</tr>
<tr>
<td>24</td>
<td>0.9700000029</td>
<td>-0.2375</td>
<td>0.196938767</td>
</tr>
<tr>
<td>25</td>
<td>0.219999999</td>
<td>-0.2375</td>
<td>0.196938767</td>
</tr>
<tr>
<td>26</td>
<td>-0.529999971</td>
<td>-0.2375</td>
<td>0.196938767</td>
</tr>
<tr>
<td>27</td>
<td>-0.277999997</td>
<td>-0.2375</td>
<td>0.196938767</td>
</tr>
<tr>
<td>28</td>
<td>-0.203723645</td>
<td>-0.2375</td>
<td>0.196938767</td>
</tr>
<tr>
<td>29</td>
<td>1.720000003</td>
<td>-0.2375</td>
<td>0.196938767</td>
</tr>
<tr>
<td>30</td>
<td>1.720000003</td>
<td>-0.17499995</td>
<td>0.196938767</td>
</tr>
<tr>
<td>31</td>
<td>-1.720000003</td>
<td>-0.17499995</td>
<td>0.196938767</td>
</tr>
<tr>
<td>32</td>
<td>-1.720000003</td>
<td>-0.17499995</td>
<td>0.196938767</td>
</tr>
<tr>
<td>33</td>
<td>-1.09272826</td>
<td>-0.574999988</td>
<td>0.196938767</td>
</tr>
<tr>
<td>34</td>
<td>-2.20576119</td>
<td>-0.319220603</td>
<td>0.196938767</td>
</tr>
<tr>
<td>35</td>
<td>-0.20804162</td>
<td>-0.28882426</td>
<td>0.196938767</td>
</tr>
<tr>
<td>36</td>
<td>-0.322988957</td>
<td>-0.338156313</td>
<td>0.196938767</td>
</tr>
<tr>
<td>37</td>
<td>-0.79449033</td>
<td>-0.382501112</td>
<td>0.196938767</td>
</tr>
<tr>
<td>38</td>
<td>-1.28426182</td>
<td>-0.277424498</td>
<td>0.196938767</td>
</tr>
<tr>
<td>39</td>
<td>-1.71326302</td>
<td>-0.301485866</td>
<td>0.196938767</td>
</tr>
<tr>
<td>40</td>
<td>-2.156037298</td>
<td>-0.925972641</td>
<td>0.196938767</td>
</tr>
<tr>
<td>41</td>
<td>-1.7776819</td>
<td>-0.907275558</td>
<td>0.196938767</td>
</tr>
<tr>
<td>42</td>
<td>-1.1520257</td>
<td>-0.974448684</td>
<td>0.196938767</td>
</tr>
<tr>
<td>43</td>
<td>-0.801568925</td>
<td>-1.054304484</td>
<td>0.196938767</td>
</tr>
<tr>
<td>44</td>
<td>-0.373209834</td>
<td>-0.86950245</td>
<td>0.196938767</td>
</tr>
<tr>
<td>45</td>
<td>0.192131385</td>
<td>-0.8155616</td>
<td>0.196938767</td>
</tr>
<tr>
<td>46</td>
<td>0.71651566</td>
<td>-0.844312795</td>
<td>0.196938767</td>
</tr>
<tr>
<td>47</td>
<td>1.16683564</td>
<td>-0.800727848</td>
<td>0.196938767</td>
</tr>
<tr>
<td>48</td>
<td>0.222238137</td>
<td>-0.222472363</td>
<td>0.196938767</td>
</tr>
<tr>
<td>49</td>
<td>-0.23884392</td>
<td>-1.54610902</td>
<td>0.196938767</td>
</tr>
<tr>
<td>50</td>
<td>-1.76220248</td>
<td>-1.45743545</td>
<td>0.196938767</td>
</tr>
<tr>
<td>51</td>
<td>-1.20654345</td>
<td>-1.40759685</td>
<td>0.196938767</td>
</tr>
</tbody>
</table>
INTERACTION PROPERTIES

* Surface Interaction, name=IntProp-cutting
 * Friction, taumax=143.
 0.6,
 * Gap Conductance
 20000.0,
 0.0,
 0.001
 * Gap Heat Generation
 1.0,
 0.195
 * Surface Interaction, name=IntProp-heat
 * Gap Conductance
 20000.0,
 0.0,
 0.002

** BOUNDARY CONDITIONS **

* Name: bc-WP1 Type: Displacement/Rotation
 * Boundary
 PickedSet13, 2

** PREDEFINED FIELDS **

* Name: Predefined Field-wp Type: Temperature
 * Initial Conditions, type=TEMPERATURE
 PickedSet28, 20.

** STEP: cutting **

* Step, name=cutting
 * Dynamic Temperature-displacement, Explicit, element by element
 0.002
 * Bulk Viscosity
 0.06, 1.2

** BOUNDARY CONDITIONS **

* Name: BC-toolright Type: Displacement/Rotation
 * Boundary
 PickedSet156, 1, 1

* Name: BC-tooltop Type: Displacement/Rotation
 * Boundary
 PickedSet157, 2, 2

* Name: bc-WP2 Type: Velocity/Angular velocity
 * Boundary, type=VELOCITY, Region
 type=Bulirian
 PickedSet14, 1, 1, 5000.

* Adaptive Mesh Controls, name=Ada-1, curvature refinement=3.
 1., 0., 0.
**Adaptive Mesh, elset_PickedSet107, controls=Ada-1, frequency=1, mesh sweeps=5, op=NEW
**

** ADAPTIVE MESH CONSTRAINTS
**
** Name: Ada-Cons-1 Type: Displacement/Rotation
*Adaptive Mesh Constraint _PickedSet12, 1, 1 _PickedSet12, 2, 2
** Name: Ada-Cons-2 Type: Displacement/Rotation
*Adaptive Mesh Constraint _PickedSet21, 1, 1
** Name: Ada-Cons-3 Type: Displacement/Rotation
*Adaptive Mesh Constraint _PickedSet22, 2, 2
**

** INTERACTIONS
**
** Interaction: Int-2
*Contact Pair, interaction=IntProp-heat, mechanical constraint=PENALTY, cset=Int-2
cotainsurf, substratesurf
** Interaction: Int-cutting
*Contact Pair, interaction=IntProp-cutting, mechanical constraint=KINEMATIC, weight=1.,
cset=Int-cutting
toolsurf, Surfwp
**

** OUTPUT REQUESTS
**
** Restart, write, number interval=1, time marks=NO
**

** FIELD OUTPUT: F-Output-1
**

**Output, field, number interval=100
*Node Output
A, NT, RF, U, V
*Element Output, directions=NO
DAMAGEHR, DMICRT, EVF, HFL, LE, MISESMAX, PE, PEEQ, PEEQVAVG, PEVAVG, S, SDEG, STATUS, SVAVG, TEMP
*Contact Output
CSTRESS,
**

** FIELD OUTPUT: F-Output-2
**

*Node Output
NT, RF, U
*Element Output, directions=NO
DAMAGEHR, DAMAGET, E, HFL, LE, PE, PEEQ, S, SDEG, STATUS, TEMP
*Contact Output
CFORCE,
**

** HISTORY OUTPUT: H-Output-1
**

*Output, history, variable=FRESELECT
*End Step

**

** STEP: Step-2
**

*Step, name=Step-2
*Dynamic Temperature-displacement, Explicit
, 0.0001

** Bulk Viscosity
0.06, 1.2
**

** BOUNDARY CONDITIONS
**
** Name: BC-toolrigh Type: Displacement/Rotation
*Boundary, op=NEW _PickedSet156, 1, 1
** Name: BC-tooltop Type: Displacement/Rotation
*Boundary, op=NEW _PickedSet157, 2, 2
** Name: bc-WP1 Type: Displacement/Rotation
*Boundary, op=NEW
** Name: bc-WP2 Type: Velocity/Angular velocity
*Boundary, op=NEW
** Name: retract Type: Displacement/Rotation
*Boundary, op=NEW, amplitude=Amp-1 _PickedSet133, 1, 1, -0.2 _PickedSet133, 2, 2, -0.2
*Adaptive Mesh, op=NEW
**

** ADAPTIVE MESH CONSTRAINTS
**
** Name: Ada-Cons-1 Type: Displacement/Rotation
*Adaptive Mesh Constraint, op=NEW
** Name: Ada-Cons-2 Type: Displacement/Rotation
*Adaptive Mesh Constraint, op=NEW
** Name: Ada-Cons-3 Type: Displacement/Rotation
*Adaptive Mesh Constraint, op=NEW
**

** OUTPUT REQUESTS
**
** Restart, write, number interval=1, time marks=NO
**

** FIELD OUTPUT: F-Output-1
**

**Output, field, number interval=100
*Node Output
A, NT, RF, U, V
*Element Output, directions=YES
DAMAGEHR, DMICRT, EVF, HFL, LE, MISESMAX, PE, PEEQ, PEEQVAVG, PEVAVG, S, SDEG, STATUS, SVAVG, TEMP
*Contact Output
CSTRESS,
**

** FIELD OUTPUT: F-Output-2
**

*Node Output
NT, RF, U
*Element Output, directions=YES
DAMAGEHR, DAMAGET, E, HFL, LE, PE, PEEQ, S, SDEG, STATUS, TEMP
*Contact Output
CFORCE,
**

** HISTORY OUTPUT: H-Output-1
**

*Output, history, variable=FRESELECT
*End Step