Grain Boundary Specific Segregation in Nanocrystalline Fe(Cr)

Abstract

A cross-correlative precession electron diffraction – atom probe tomography investigation of Cr segregation in a Fe(Cr) nanocrystalline alloy was undertaken. Solute segregation was found to be dependent on grain boundary type. The results of which were compared to a hybrid Molecular Dynamics and Monte Carlo simulation that predicted the segregation for special character, low angle, and high angle grain boundaries, as well as the angle of inclination of the grain boundary. It was found that the highest segregation concentration was for the high angle grain boundaries and is explained in terms of clustering driven by the onset of phase separation. For special character boundaries, the highest Gibbsain interfacial excess was predicted at the incoherent ∑3 followed by ∑9 and ∑11 boundaries with negligible segregation to the twin and ∑5 boundaries. In addition, the low angle grain boundaries predicted negligible segregation. All of these trends matched well with the experiment. This solute-boundary segregation dependency for the special character grain boundaries is explained in terms of excess volume and the energetic distribution of the solute in the boundary.

Description
Keywords
Citation
Zhou, X., et al. (2016): Grain Boundary Specific Segregation in Nanocrystalline Fe(Cr). Science Reports, vol. 6. DOI: https://doi.org/10.1038/srep3464