Fundamental studies on ultrasonic cavitation-assisted molten metal processing of A356-nanocomposites

Loading...
Thumbnail Image
Date
2013
Journal Title
Journal ISSN
Volume Title
Publisher
University of Alabama Libraries
Abstract

The usage of lightweight high-performance components is expected to increase significantly as automotive, military and aerospace industries are required to improve the energy efficiency and the performance of their products. A356, which is much lighter than steel, is an attractive replacement material. Therefore, it is of great interest to enhance its properties. There is strong evidence that the microstructure and mechanical properties can be considerably improved if nanoparticles are used as reinforcement to form metal-matrix-nano-composite (MMNC). Several recent studies revealed that ultrasonic vibration is highly efficient in dispersing nanoparticles into the melt and producing MMNC. In this thesis, a detailed analysis of the microstructure and mechanical properties is provided for an A356 alloy enhanced with Al2O3 and SiC nanoparticles via ultrasonic processing. Each type of the nanoparticles was inserted into the A356 molten metal and dispersed by ultrasonic cavitation and acoustic streaming technology (UST) to avoid agglomeration or coalescence. The results showed that microstructures were greatly refined and with the addition of nanoparticles, tensile strength, yield strength and elongation increased significantly. SEM and EDS analyses were also performed to analyze the dispersion of nanoparticles in the A356 matrix. Since the ultrasonic energy is concentrated in a small region under the ultrasonic probe, it is difficult to ensure proper cavitation and acoustic streaming for efficient dispersion of the nanoparticles (especially in larger UST systems) without to determine the suitable ultrasonic parameters via modeling and simulation. Accordingly, another goal of this thesis was to develop well-controlled UST experiments that can be used in the development and validation of a recently developed UST modeling and simulation tool.

Description
Electronic Thesis or Dissertation
Keywords
Materials science
Citation